logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002453_00144

You are here: Home > Sequence: MGYG000002453_00144

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Akkermansia muciniphila_B
Lineage Bacteria; Verrucomicrobiota; Verrucomicrobiae; Verrucomicrobiales; Akkermansiaceae; Akkermansia; Akkermansia muciniphila_B
CAZyme ID MGYG000002453_00144
CAZy Family GT4
CAZyme Description Glycosyltransferase Gtf1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
395 MGYG000002453_4|CGC1 44312.19 9.7741
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002453 3096868 Isolate China Asia
Gene Location Start: 127652;  End: 128839  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002453_00144.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 219 370 3.2e-34 0.95625

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03820 GT4_AmsD-like 4.64e-75 4 390 2 350
amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran.
cd03801 GT4_PimA-like 1.17e-52 3 394 1 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03811 GT4_GT28_WabH-like 3.23e-49 17 380 12 346
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
COG0438 RfaB 1.58e-40 3 394 1 375
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
pfam00534 Glycos_transf_1 3.56e-35 221 376 1 158
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QWP21544.1 1.66e-290 1 395 1 395
QWP02866.1 2.09e-290 1 395 7 401
QWP26685.1 2.09e-290 1 395 7 401
QWP53563.1 2.09e-290 1 395 7 401
QWP68081.1 2.09e-290 1 395 7 401

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6EJJ_A 1.43e-12 220 393 181 354
Structureof a glycosyltransferase / state 2 [Campylobacter jejuni],6EJJ_B Structure of a glycosyltransferase / state 2 [Campylobacter jejuni]
6EJI_A 1.43e-12 220 393 181 354
Structureof a glycosyltransferase [Campylobacter jejuni],6EJI_B Structure of a glycosyltransferase [Campylobacter jejuni],6EJK_A Structure of a glycosyltransferase [Campylobacter jejuni],6EJK_B Structure of a glycosyltransferase [Campylobacter jejuni]
5N7Z_A 3.19e-12 177 363 135 325
glycosyltransferasein LPS biosynthesis [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2],6Y6G_A Chain A, Lipopolysaccharide 1,6-galactosyltransferase [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2]
5N80_A 3.21e-12 177 363 136 326
glycosyltransferaseLPS biosynthesis in complex with UDP [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2]
6Y6I_A 3.23e-12 177 363 137 327
ChainA, Lipopolysaccharide 1,6-galactosyltransferase [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
O05083 1.24e-20 163 393 124 353
Uncharacterized glycosyltransferase HI_1698 OS=Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) OX=71421 GN=HI_1698 PE=3 SV=1
Q46634 6.37e-17 221 393 181 350
Amylovoran biosynthesis glycosyltransferase AmsD OS=Erwinia amylovora OX=552 GN=amsD PE=3 SV=2
P13484 1.10e-15 175 389 300 515
Poly(glycerol-phosphate) alpha-glucosyltransferase OS=Bacillus subtilis (strain 168) OX=224308 GN=tagE PE=1 SV=1
Q9L1I4 2.32e-15 196 392 183 380
Exopolysaccharide phosphotransferase SCO2592 OS=Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) OX=100226 GN=SCO2592 PE=3 SV=1
B1VEI4 1.27e-12 227 388 228 398
D-inositol 3-phosphate glycosyltransferase OS=Corynebacterium urealyticum (strain ATCC 43042 / DSM 7109) OX=504474 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000058 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002453_00144.