logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002517_02419

You are here: Home > Sequence: MGYG000002517_02419

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Roseburia hominis
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Roseburia; Roseburia hominis
CAZyme ID MGYG000002517_02419
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
397 46080.33 8.9814
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002517 3592125 Isolate United Kingdom Europe
Gene Location Start: 2685545;  End: 2686738  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002517_02419.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 221 359 1.1e-28 0.8875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 3.05e-44 5 393 1 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 6.74e-35 9 395 7 377
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03823 GT4_ExpE7-like 3.67e-33 5 394 1 357
glycosyltransferase ExpE7 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. ExpE7 in Sinorhizobium meliloti has been shown to be involved in the biosynthesis of galactoglucans (exopolysaccharide II).
pfam00534 Glycos_transf_1 1.93e-28 223 374 1 158
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.
cd03819 GT4_WavL-like 5.14e-26 6 357 1 316
Vibrio cholerae WavL and similar sequences. This family is most closely related to the GT4 family of glycosyltransferases. WavL in Vibrio cholerae has been shown to be involved in the biosynthesis of the lipopolysaccharide core.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AEN97570.1 2.12e-294 1 397 1 397
VCV20896.1 2.41e-230 1 397 1 397
CBL13767.1 2.79e-230 1 397 5 401
CBL07750.1 6.90e-230 1 397 1 397
QXE19767.1 4.74e-127 5 392 9 390

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2F9F_A 5.91e-12 225 358 24 161
CrystalStructure of the Putative Mannosyl Transferase (wbaZ-1)from Archaeoglobus fulgidus, Northeast Structural Genomics Target GR29A. [Archaeoglobus fulgidus DSM 4304]
5N7Z_A 1.03e-06 215 351 171 313
glycosyltransferasein LPS biosynthesis [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2],6Y6G_A Chain A, Lipopolysaccharide 1,6-galactosyltransferase [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2]
5N80_A 1.04e-06 215 351 172 314
glycosyltransferaseLPS biosynthesis in complex with UDP [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2]
6Y6I_A 1.04e-06 215 351 173 315
ChainA, Lipopolysaccharide 1,6-galactosyltransferase [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2]
3C4Q_A 8.68e-06 229 342 228 351
Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q48453 6.65e-14 9 393 4 356
Uncharacterized 41.2 kDa protein in cps region OS=Klebsiella pneumoniae OX=573 PE=4 SV=1
Q59002 1.95e-13 62 342 71 329
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
B1MHQ0 1.35e-09 220 356 234 375
D-inositol 3-phosphate glycosyltransferase OS=Mycobacteroides abscessus (strain ATCC 19977 / DSM 44196 / CIP 104536 / JCM 13569 / NCTC 13031 / TMC 1543) OX=561007 GN=mshA PE=3 SV=1
D1BZ82 1.66e-08 228 342 237 356
D-inositol 3-phosphate glycosyltransferase OS=Xylanimonas cellulosilytica (strain DSM 15894 / CECT 5975 / LMG 20990 / XIL07) OX=446471 GN=mshA PE=3 SV=1
A3PU84 1.74e-08 224 341 233 355
D-inositol 3-phosphate glycosyltransferase OS=Mycobacterium sp. (strain JLS) OX=164757 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000031 0.000006 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002517_02419.