logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002608_00098

You are here: Home > Sequence: MGYG000002608_00098

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-485 sp900541835
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Muribaculaceae; CAG-485; CAG-485 sp900541835
CAZyme ID MGYG000002608_00098
CAZy Family GT3
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
555 MGYG000002608_1|CGC1 60827.21 7.0577
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002608 2400131 MAG China Asia
Gene Location Start: 112777;  End: 114444  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.11

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT3 15 356 3.9e-107 0.5510204081632653

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03793 GT3_GSY2-like 8.49e-63 12 506 3 550
glycogen synthase GSY2 and similar proteins. Glycogen synthase, which is most closely related to the GT3 family of glycosyltransferases, catalyzes the transfer of a glucose molecule from UDP-glucose to a terminal branch of a glycogen molecule, a rate-limit step of glycogen biosynthesis. GSY2, the member of this family in S. cerevisiae, has been shown to possess glycogen synthase activity.
pfam05693 Glycogen_syn 2.35e-60 15 506 1 545
Glycogen synthase. This family consists of the eukaryotic glycogen synthase proteins GYS1, GYS2 and GYS3. Glycogen synthase (GS) is the enzyme responsible for the synthesis of -1,4-linked glucose chains in glycogen. It is the rate limiting enzyme in the synthesis of the polysaccharide, and its activity is highly regulated through phosphorylation at multiple sites and also by allosteric effectors, mainly glucose 6-phosphate (G6P).
COG0438 RfaB 2.36e-10 160 503 87 341
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03801 GT4_PimA-like 2.52e-10 161 503 85 332
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03821 GT4_Bme6-like 1.43e-08 186 503 99 344
Brucella melitensis Bme6 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Bme6 in Brucella melitensis has been shown to be involved in the biosynthesis of a polysaccharide.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QCD39087.1 2.95e-197 11 553 11 572
QCP72779.1 2.95e-197 11 553 11 572
QCD35215.1 5.80e-196 11 550 9 547
QCD43631.1 4.02e-195 11 550 11 569
ANU62732.1 4.21e-191 11 550 9 547

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3NAZ_A 1.69e-51 5 513 22 603
Basalstate form of Yeast Glycogen Synthase [Saccharomyces cerevisiae],3NAZ_B Basal state form of Yeast Glycogen Synthase [Saccharomyces cerevisiae],3NAZ_C Basal state form of Yeast Glycogen Synthase [Saccharomyces cerevisiae],3NAZ_D Basal state form of Yeast Glycogen Synthase [Saccharomyces cerevisiae],3NCH_A Yeast Glycogen Synthase (Gsy2p) Basal State Conformation [Saccharomyces cerevisiae],3NCH_B Yeast Glycogen Synthase (Gsy2p) Basal State Conformation [Saccharomyces cerevisiae],3NCH_C Yeast Glycogen Synthase (Gsy2p) Basal State Conformation [Saccharomyces cerevisiae],3NCH_D Yeast Glycogen Synthase (Gsy2p) Basal State Conformation [Saccharomyces cerevisiae],3O3C_A Glycogen synthase basal state UDP complex [Saccharomyces cerevisiae],3O3C_B Glycogen synthase basal state UDP complex [Saccharomyces cerevisiae],3O3C_C Glycogen synthase basal state UDP complex [Saccharomyces cerevisiae],3O3C_D Glycogen synthase basal state UDP complex [Saccharomyces cerevisiae],3RSZ_A Maltodextran bound basal state conformation of yeast glycogen synthase isoform 2 [Saccharomyces cerevisiae],3RSZ_B Maltodextran bound basal state conformation of yeast glycogen synthase isoform 2 [Saccharomyces cerevisiae],3RSZ_C Maltodextran bound basal state conformation of yeast glycogen synthase isoform 2 [Saccharomyces cerevisiae],3RSZ_D Maltodextran bound basal state conformation of yeast glycogen synthase isoform 2 [Saccharomyces cerevisiae]
4QLB_A 1.18e-50 3 506 38 598
StructuralBasis for the Recruitment of Glycogen Synthase by Glycogenin [Caenorhabditis elegans],4QLB_B Structural Basis for the Recruitment of Glycogen Synthase by Glycogenin [Caenorhabditis elegans],4QLB_C Structural Basis for the Recruitment of Glycogen Synthase by Glycogenin [Caenorhabditis elegans],4QLB_D Structural Basis for the Recruitment of Glycogen Synthase by Glycogenin [Caenorhabditis elegans]
6U77_A 1.70e-50 5 467 2 536
yGsy2pin complex with small molecule [Saccharomyces cerevisiae S288C],6U77_B yGsy2p in complex with small molecule [Saccharomyces cerevisiae S288C],6U77_C yGsy2p in complex with small molecule [Saccharomyces cerevisiae S288C],6U77_D yGsy2p in complex with small molecule [Saccharomyces cerevisiae S288C]
5UX7_A 1.99e-50 5 467 22 556
Activatedstate yeast Glycogen Synthase in complex with UDP-xylose [Saccharomyces cerevisiae S288C],5UX7_B Activated state yeast Glycogen Synthase in complex with UDP-xylose [Saccharomyces cerevisiae S288C],5UX7_C Activated state yeast Glycogen Synthase in complex with UDP-xylose [Saccharomyces cerevisiae S288C],5UX7_D Activated state yeast Glycogen Synthase in complex with UDP-xylose [Saccharomyces cerevisiae S288C]
4KQ1_A 2.08e-50 5 467 21 555
Crystalstructure of yeast glycogen synthase in complex with uridine-5'-monophosphate [Saccharomyces cerevisiae FostersO],4KQ1_B Crystal structure of yeast glycogen synthase in complex with uridine-5'-monophosphate [Saccharomyces cerevisiae FostersO],4KQ1_C Crystal structure of yeast glycogen synthase in complex with uridine-5'-monophosphate [Saccharomyces cerevisiae FostersO],4KQ1_D Crystal structure of yeast glycogen synthase in complex with uridine-5'-monophosphate [Saccharomyces cerevisiae FostersO],4KQ2_A Glucose1,2cyclic phosphate bound activated state of Yeast Glycogen Synthase [Saccharomyces cerevisiae FostersO],4KQ2_B Glucose1,2cyclic phosphate bound activated state of Yeast Glycogen Synthase [Saccharomyces cerevisiae FostersO],4KQ2_C Glucose1,2cyclic phosphate bound activated state of Yeast Glycogen Synthase [Saccharomyces cerevisiae FostersO],4KQ2_D Glucose1,2cyclic phosphate bound activated state of Yeast Glycogen Synthase [Saccharomyces cerevisiae FostersO]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q8MJ26 2.98e-55 12 547 28 616
Glycogen [starch] synthase, muscle OS=Macaca mulatta OX=9544 GN=GYS1 PE=2 SV=1
A7MB78 4.05e-55 12 547 28 616
Glycogen [starch] synthase, muscle OS=Bos taurus OX=9913 GN=GYS1 PE=2 SV=1
P13834 5.51e-55 12 547 28 616
Glycogen [starch] synthase, muscle OS=Oryctolagus cuniculus OX=9986 GN=GYS1 PE=1 SV=4
A2RRU1 5.71e-55 12 547 28 616
Glycogen [starch] synthase, muscle OS=Rattus norvegicus OX=10116 GN=Gys1 PE=1 SV=1
P13807 7.76e-55 12 547 28 616
Glycogen [starch] synthase, muscle OS=Homo sapiens OX=9606 GN=GYS1 PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000076 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002608_00098.