logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002608_00674

You are here: Home > Sequence: MGYG000002608_00674

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-485 sp900541835
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Muribaculaceae; CAG-485; CAG-485 sp900541835
CAZyme ID MGYG000002608_00674
CAZy Family GT4
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
380 41260.74 8.8586
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002608 2400131 MAG China Asia
Gene Location Start: 209548;  End: 210690  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002608_00674.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 198 344 3.2e-24 0.8875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 1.23e-47 2 376 1 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 1.12e-37 1 380 1 379
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03811 GT4_GT28_WabH-like 4.20e-37 16 313 12 295
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
cd03820 GT4_AmsD-like 8.19e-34 11 314 6 289
amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran.
cd03809 GT4_MtfB-like 8.59e-32 2 319 1 306
glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QCD34526.1 1.39e-119 1 379 1 359
AHF12040.1 2.98e-119 1 378 1 361
BCI64460.1 1.46e-114 1 378 1 361
QNL37901.1 8.93e-113 1 378 1 359
QQY41089.1 2.71e-112 1 378 1 360

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P54490 1.33e-14 92 344 73 311
Uncharacterized glycosyltransferase YqgM OS=Bacillus subtilis (strain 168) OX=224308 GN=yqgM PE=3 SV=2
Q44571 3.33e-08 90 378 95 377
GDP-mannose:cellobiosyl-diphosphopolyprenol alpha-mannosyltransferase OS=Komagataeibacter xylinus OX=28448 GN=aceC PE=1 SV=1
O32272 1.38e-07 68 312 90 316
Putative teichuronic acid biosynthesis glycosyltransferase TuaC OS=Bacillus subtilis (strain 168) OX=224308 GN=tuaC PE=2 SV=1
B2SUK8 1.79e-07 90 313 86 301
GDP-mannose:cellobiosyl-diphosphopolyprenol alpha-mannosyltransferase OS=Xanthomonas oryzae pv. oryzae (strain PXO99A) OX=360094 GN=gumH PE=3 SV=1
P87172 2.11e-07 16 378 11 365
Phosphatidylinositol N-acetylglucosaminyltransferase gpi3 subunit OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=gpi3 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000048 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002608_00674.