logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002717_03955

You are here: Home > Sequence: MGYG000002717_03955

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides;
CAZyme ID MGYG000002717_03955
CAZy Family CE12
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
671 75617.02 7.215
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002717 5602088 MAG Canada North America
Gene Location Start: 39;  End: 2054  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002717_03955.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH43 264 498 3.8e-71 0.9878048780487805
CE12 8 213 5e-70 0.919047619047619

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd18821 GH43_Pc3Gal43A-like 1.33e-144 256 515 1 262
Glycosyl hydrolase family 43 protein such as Phanerochaete chrysosporium exo-beta-1,3-galactanase (Pc1, 3Gal43A, 1,3Gal43A). This glycosyl hydrolase family 43 (GH43) subgroup includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Phanerochaete chrysosporium 1,3Gal43A (Pc1, 3Gal43A), Fusarium oxysporum 12S Fo/1 (3Gal), and Streptomyces sp. 19(2012) SGalase1 and SGalase2. It belongs to the GH43_CtGH43 subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43_CtGH43 includes proteins such as Clostridium thermocellum exo-beta-1,3-galactanase (Ct1,3Gal43A or CtGH43) which is comprised of the GH43 domain, a CBM13 domain, and a dockerin domain, exhibits an unusual ability to hydrolyze beta-1,3-galactan in the presence of a beta-1,6 linked branch, and is missing an essential acidic residue suggesting a mechanism by which it bypasses beta-1,6 linked branches in the substrate. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd01821 Rhamnogalacturan_acetylesterase_like 4.78e-78 1 214 11 198
Rhamnogalacturan_acetylesterase_like subgroup of SGNH-hydrolases. Rhamnogalacturan acetylesterase removes acetyl esters from rhamnogalacturonan substrates, and renders them susceptible to degradation by rhamnogalacturonases. Rhamnogalacturonans are highly branched regions in pectic polysaccharides, consisting of repeating -(1,2)-L-Rha-(1,4)-D-GalUA disaccharide units, with many rhamnose residues substituted by neutral oligosaccharides such as arabinans, galactans and arabinogalactans. Extracellular enzymes participating in the degradation of plant cell wall polymers, such as Rhamnogalacturonan acetylesterase, would typically be found in saprophytic and plant pathogenic fungi and bacteria.
cd08985 GH43_CtGH43-like 7.04e-76 256 513 1 271
Glycosyl hydrolase family 43 protein such as Clostridium thermocellum exo-beta-1,3-galactanase CtGH43 and Ruminococcus champanellensis arabinanase Ara43A. This glycosyl hydrolase family 43 (GH43) subgroup includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Clostridium thermocellum (Ct1,3Gal43A or CtGH43) and Phanerochaete chrysosporium 1,3Gal43A (Pc1, 3Gal43A), and arabinanase (EC 3.2.1.99) activity such as Ruminococcus champanellensis Ara43A. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd18822 GH43_CtGH43-like 5.44e-72 256 514 1 265
Glycosyl hydrolase family 43 protein such as Clostridium thermocellum exo-beta-1,3-galactanase (Ct1,3Gal43A or CtGH43). This glycosyl hydrolase family 43 (GH43) subgroup includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Clostridium thermocellum exo-beta-1,3-galactanase (Ct1,3Gal43A or CtGH43), Streptomyces avermitilis MA-4680 = NBRC 14893 (Sa1,3Gal43A;SAV2109) (1,3Gal43A), and Ruminiclostridium thermocellum ATCC 27405 (Ct1,3Gal43A;CtGH43;Cthe_0661) (1,3Gal43A). It belongs to the GH43_CtGH43 subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43_CtGH43 includes proteins such as Clostridium thermocellum exo-beta-1,3-galactanase (Ct1,3Gal43A or CtGH43) which is comprised of the GH43 domain, a CBM13 domain, and a dockerin domain, exhibits an unusual ability to hydrolyze beta-1,3-galactan in the presence of a beta-1,6 linked branch, and is missing an essential acidic residue suggesting a mechanism by which it bypasses beta-1,6 linked branches in the substrate. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd18825 GH43_CtGH43-like 9.16e-69 256 515 1 285
Glycosyl hydrolase family 43 protein similar to Clostridium thermocellum exo-beta-1,3-galactanase CtGH43 and Ruminococcus champanellensis arabinanase Ara43A. This uncharacterized glycosyl hydrolase family 43 (GH43) subgroup belongs to a subgroup which includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Clostridium thermocellum (Ct1,3Gal43A or CtGH43) and Phanerochaete chrysosporium 1,3Gal43A (Pc1, 3Gal43A), and arabinanase (EC 3.2.1.99) activity such as Ruminococcus champanellensis Ara43A. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QDO71467.1 0.0 235 671 20 456
QUT89994.1 2.83e-296 238 671 31 464
ALJ58889.1 2.83e-296 238 671 31 464
QRQ58822.1 1.74e-281 235 668 20 453
SCV06763.1 2.17e-281 235 668 26 459

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3NQH_A 4.58e-238 240 668 6 438
Crystalstructure of a glycosyl hydrolase (BT_2959) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.11 A resolution [Bacteroides thetaiotaomicron VPI-5482]
5FLW_A 1.71e-58 250 515 12 285
Crystalstructure of putative exo-beta-1,3-galactanase from Bifidobacterium bifidum s17 [Bifidobacterium bifidum S17],5FLW_B Crystal structure of putative exo-beta-1,3-galactanase from Bifidobacterium bifidum s17 [Bifidobacterium bifidum S17]
7BYS_A 1.19e-47 242 532 3 293
ChainA, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium],7BYS_B Chain B, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium],7BYT_A Chain A, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium]
7BYV_A 3.18e-47 242 532 4 294
ChainA, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium]
7BYX_A 8.13e-47 242 532 3 293
ChainA, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium],7BYX_B Chain B, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium],7BYX_C Chain C, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium],7BYX_D Chain D, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
O31523 8.46e-37 14 214 28 212
Rhamnogalacturonan acetylesterase RhgT OS=Bacillus subtilis (strain 168) OX=224308 GN=rhgT PE=1 SV=1
O31528 1.21e-22 14 221 24 205
Probable rhamnogalacturonan acetylesterase YesY OS=Bacillus subtilis (strain 168) OX=224308 GN=yesY PE=1 SV=1
P42304 4.04e-14 8 178 195 351
Uncharacterized esterase YxiM OS=Bacillus subtilis (strain 168) OX=224308 GN=yxiM PE=1 SV=2
Q00017 1.32e-09 9 214 34 229
Rhamnogalacturonan acetylesterase OS=Aspergillus aculeatus OX=5053 GN=rha1 PE=1 SV=1
Q5BAA2 3.02e-09 14 214 34 224
Rhamnogalacturonan acetylesterase OS=Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) OX=227321 GN=AN2528 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000052 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002717_03955.