logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002788_00787

You are here: Home > Sequence: MGYG000002788_00787

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UMGS1004 sp900548845
Lineage Bacteria; Firmicutes_A; Clostridia_A; Christensenellales; Borkfalkiaceae; UMGS1004; UMGS1004 sp900548845
CAZyme ID MGYG000002788_00787
CAZy Family GT4
CAZyme Description GDP-mannose-dependent monoacylated alpha-(1-6)-phosphatidylinositol monomannoside mannosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
377 MGYG000002788_113|CGC1 42185.76 9.1126
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002788 1418375 MAG United States North America
Gene Location Start: 2446;  End: 3579  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002788_00787.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 198 346 6.4e-24 0.9375

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03795 GT4_WfcD-like 1.26e-121 2 359 1 351
Escherichia coli alpha-1,3-mannosyltransferase WfcD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP-linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria and eukaryotes.
cd03801 GT4_PimA-like 1.09e-54 2 370 1 365
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03820 GT4_AmsD-like 8.94e-42 71 352 73 336
amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran.
COG0438 RfaB 1.81e-39 1 370 1 374
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03794 GT4_WbuB-like 1.23e-34 2 364 1 388
Escherichia coli WbuB and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. WbuB in E. coli is involved in the biosynthesis of the O26 O-antigen. It has been proposed to function as an N-acetyl-L-fucosamine (L-FucNAc) transferase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
CBL02956.1 7.15e-141 2 366 3 378
ADU20959.1 3.02e-136 2 369 3 380
QUT54451.1 1.39e-100 2 358 3 357
QJR76547.1 2.71e-98 2 358 3 356
QSI02191.1 6.16e-96 1 370 1 367

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q9HTC0 4.93e-38 1 358 1 352
D-rhamnosyltransferase WbpZ OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) OX=208964 GN=wbpZ PE=1 SV=1
Q46638 2.57e-09 63 340 97 373
Amylovoran biosynthesis glycosyltransferase AmsK OS=Erwinia amylovora OX=552 GN=amsK PE=3 SV=2
Q58469 1.04e-08 1 350 4 367
Uncharacterized glycosyltransferase MJ1069 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1069 PE=3 SV=1
Q9R9N1 2.73e-08 1 342 1 308
Lipopolysaccharide core biosynthesis glycosyltransferase LpsE OS=Rhizobium meliloti (strain 1021) OX=266834 GN=lpsE PE=3 SV=1
A4T324 8.40e-07 204 335 244 378
D-inositol 3-phosphate glycosyltransferase OS=Mycolicibacterium gilvum (strain PYR-GCK) OX=350054 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000041 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002788_00787.