logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002827_04371

You are here: Home > Sequence: MGYG000002827_04371

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Phyllobacterium sp900539805
Lineage Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales_A; Rhizobiaceae_A; Phyllobacterium; Phyllobacterium sp900539805
CAZyme ID MGYG000002827_04371
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
442 MGYG000002827_54|CGC1 50169.39 7.0906
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002827 5102924 MAG Singapore Asia
Gene Location Start: 2515;  End: 3843  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002827_04371.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 236 394 3.7e-29 0.94375

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03823 GT4_ExpE7-like 6.86e-102 6 416 1 355
glycosyltransferase ExpE7 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. ExpE7 in Sinorhizobium meliloti has been shown to be involved in the biosynthesis of galactoglucans (exopolysaccharide II).
cd03801 GT4_PimA-like 2.87e-40 6 395 1 340
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 5.19e-36 6 423 1 381
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
pfam00534 Glycos_transf_1 2.70e-23 239 388 2 144
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.
cd03798 GT4_WlbH-like 6.69e-22 7 394 1 346
Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QND54627.1 4.79e-307 1 442 1 442
ATU94698.1 3.09e-303 1 442 1 442
BBA73379.1 5.26e-283 1 442 1 440
ASV84582.1 6.13e-282 1 442 1 440
QNQ41793.1 8.70e-282 1 442 1 440

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3C4Q_A 4.19e-13 194 388 170 371
Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum]
3C48_A 4.38e-13 194 388 190 391
Structureof the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum],3C48_B Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum]
4XSO_A 8.14e-09 215 388 176 349
ChainA, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSO_B Chain B, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSP_A Chain A, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSP_B Chain B, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSR_A Chain A, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSR_B Chain B, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSU_A Chain A, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSU_B Chain B, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418]
7MI0_A 2.42e-06 194 423 156 396
ChainA, Glycosyltransferase [Rickettsia africae ESF-5]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q8NTA6 2.23e-12 194 388 170 371
D-inositol 3-phosphate glycosyltransferase OS=Corynebacterium glutamicum (strain ATCC 13032 / DSM 20300 / BCRC 11384 / JCM 1318 / LMG 3730 / NCIMB 10025) OX=196627 GN=mshA PE=1 SV=1
A4QB40 2.23e-12 194 388 170 371
D-inositol 3-phosphate glycosyltransferase OS=Corynebacterium glutamicum (strain R) OX=340322 GN=mshA PE=3 SV=1
Q8FSH1 9.57e-12 194 397 170 380
D-inositol 3-phosphate glycosyltransferase OS=Corynebacterium efficiens (strain DSM 44549 / YS-314 / AJ 12310 / JCM 11189 / NBRC 100395) OX=196164 GN=mshA PE=3 SV=1
B2HQV2 7.98e-11 210 367 221 377
D-inositol 3-phosphate glycosyltransferase OS=Mycobacterium marinum (strain ATCC BAA-535 / M) OX=216594 GN=mshA PE=3 SV=1
C8XA09 3.30e-10 207 395 211 404
D-inositol 3-phosphate glycosyltransferase OS=Nakamurella multipartita (strain ATCC 700099 / DSM 44233 / CIP 104796 / JCM 9543 / NBRC 105858 / Y-104) OX=479431 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000041 0.000002 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002827_04371.