| Species | Actinomyces urogenitalis | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Lineage | Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Actinomycetaceae; Actinomyces; Actinomyces urogenitalis | |||||||||||
| CAZyme ID | MGYG000002900_01889 | |||||||||||
| CAZy Family | GT4 | |||||||||||
| CAZyme Description | Trehalose synthase | |||||||||||
| CAZyme Property |
|
|||||||||||
| Genome Property |
|
|||||||||||
| Gene Location | Start: 4319; End: 5749 Strand: + | |||||||||||
| Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
|---|---|---|---|---|---|---|---|
| cd03792 | GT4_trehalose_phosphorylase | 1.36e-62 | 54 | 472 | 13 | 376 | trehalose phosphorylase and similar proteins. Trehalose phosphorylase (TP) reversibly catalyzes trehalose synthesis and degradation from alpha-glucose-1-phosphate (alpha-Glc-1-P) and glucose. The catalyzing activity includes the phosphorolysis of trehalose, which produce alpha-Glc-1-P and glucose, and the subsequent synthesis of trehalose. This family is most closely related to the GT4 family of glycosyltransferases. |
| cd03800 | GT4_sucrose_synthase | 6.13e-22 | 263 | 463 | 205 | 392 | sucrose-phosphate synthase and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. The sucrose-phosphate synthases in this family may be unique to plants and photosynthetic bacteria. This enzyme catalyzes the synthesis of sucrose 6-phosphate from fructose 6-phosphate and uridine 5'-diphosphate-glucose, a key regulatory step of sucrose metabolism. The activity of this enzyme is regulated by phosphorylation and moderated by the concentration of various metabolites and light. |
| cd03801 | GT4_PimA-like | 3.75e-21 | 62 | 471 | 23 | 365 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
| COG0438 | RfaB | 2.66e-20 | 276 | 474 | 197 | 377 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
| pfam00534 | Glycos_transf_1 | 1.30e-15 | 277 | 448 | 1 | 153 | Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family. |
| Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
|---|---|---|---|---|---|
| ALC98419.1 | 2.07e-265 | 1 | 475 | 1 | 474 |
| AMD87259.1 | 4.68e-257 | 1 | 474 | 1 | 471 |
| QPL05182.1 | 9.44e-257 | 1 | 474 | 1 | 472 |
| VEG28211.1 | 7.57e-236 | 1 | 474 | 1 | 470 |
| BDA64638.1 | 8.49e-234 | 1 | 473 | 1 | 470 |
| Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
|---|---|---|---|---|---|---|
| 2X6Q_A | 3.79e-46 | 11 | 471 | 16 | 411 | Crystalstructure of trehalose synthase TreT from P.horikoshi [Pyrococcus horikoshii],2X6Q_B Crystal structure of trehalose synthase TreT from P.horikoshi [Pyrococcus horikoshii],2X6R_A Crystal structure of trehalose synthase TreT from P.horikoshi produced by soaking in trehalose [Pyrococcus horikoshii],2X6R_B Crystal structure of trehalose synthase TreT from P.horikoshi produced by soaking in trehalose [Pyrococcus horikoshii] |
| 2XA2_A | 2.73e-45 | 11 | 471 | 16 | 411 | Crystalstructure of trehalose synthase TreT mutant E326A from P. horikoshii in complex with UDPG [Pyrococcus horikoshii],2XA2_B Crystal structure of trehalose synthase TreT mutant E326A from P. horikoshii in complex with UDPG [Pyrococcus horikoshii],2XA9_A Crystal structure of trehalose synthase TreT mutant E326A from P. horikoshii in complex with UDPG [Pyrococcus horikoshii],2XA9_B Crystal structure of trehalose synthase TreT mutant E326A from P. horikoshii in complex with UDPG [Pyrococcus horikoshii],2XMP_A Crystal structure of trehalose synthase TreT mutant E326A from P. horishiki in complex with UDP [Pyrococcus horikoshii],2XMP_B Crystal structure of trehalose synthase TreT mutant E326A from P. horishiki in complex with UDP [Pyrococcus horikoshii] |
| 2XA1_A | 1.41e-43 | 11 | 471 | 16 | 411 | Crystalstructure of trehalose synthase TreT from P.horikoshii (Seleno derivative) [Pyrococcus horikoshii],2XA1_B Crystal structure of trehalose synthase TreT from P.horikoshii (Seleno derivative) [Pyrococcus horikoshii] |
| 6ZJ4_AAA | 7.74e-35 | 48 | 471 | 34 | 392 | ChainAAA, Trehalose phosphorylase/synthase [Thermoproteus uzoniensis],6ZJ7_AAA Chain AAA, Trehalose phosphorylase/synthase [Thermoproteus uzoniensis 768-20],6ZJH_AAA Chain AAA, Trehalose phosphorylase/synthase [Thermoproteus uzoniensis 768-20],6ZMZ_AAA Chain AAA, Trehalose phosphorylase/synthase [Thermoproteus uzoniensis],6ZN1_AAA Chain AAA, Trehalose phosphorylase/synthase [Thermoproteus uzoniensis] |
| Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
|---|---|---|---|---|---|---|
| O58762 | 2.83e-45 | 11 | 471 | 15 | 410 | Trehalose synthase OS=Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3) OX=70601 GN=treT PE=1 SV=2 |
| Q9HH00 | 5.00e-41 | 54 | 471 | 52 | 409 | Trehalose synthase OS=Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1) OX=186497 GN=treT PE=3 SV=1 |
| Q7LYW5 | 5.00e-41 | 54 | 471 | 52 | 409 | Trehalose synthase OS=Thermococcus litoralis (strain ATCC 51850 / DSM 5473 / JCM 8560 / NS-C) OX=523849 GN=treT PE=1 SV=1 |
| Q1ARU5 | 1.84e-32 | 54 | 473 | 50 | 412 | Trehalose synthase OS=Rubrobacter xylanophilus (strain DSM 9941 / NBRC 16129 / PRD-1) OX=266117 GN=treT PE=1 SV=1 |
| C6DT68 | 2.73e-08 | 224 | 450 | 219 | 421 | D-inositol 3-phosphate glycosyltransferase OS=Mycobacterium tuberculosis (strain KZN 1435 / MDR) OX=478434 GN=mshA PE=3 SV=1 |
| Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
|---|---|---|---|---|---|
| 1.000040 | 0.000017 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.