Species | Caproiciproducens sp900546895 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Acutalibacteraceae; Caproiciproducens; Caproiciproducens sp900546895 | |||||||||||
CAZyme ID | MGYG000002934_01436 | |||||||||||
CAZy Family | GT4 | |||||||||||
CAZyme Description | D-inositol-3-phosphate glycosyltransferase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 6451; End: 7635 Strand: + |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd03822 | GT4_mannosyltransferase-like | 1.40e-106 | 7 | 375 | 1 | 370 | mannosyltransferases of glycosyltransferase family 4 and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. ORF704 in E. coli has been shown to be involved in the biosynthesis of O-specific mannose homopolysaccharides. |
cd03801 | GT4_PimA-like | 1.06e-34 | 7 | 375 | 1 | 366 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
COG0438 | RfaB | 2.15e-28 | 10 | 380 | 6 | 380 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
cd03819 | GT4_WavL-like | 1.97e-21 | 103 | 353 | 94 | 331 | Vibrio cholerae WavL and similar sequences. This family is most closely related to the GT4 family of glycosyltransferases. WavL in Vibrio cholerae has been shown to be involved in the biosynthesis of the lipopolysaccharide core. |
cd03807 | GT4_WbnK-like | 3.98e-17 | 100 | 372 | 99 | 359 | Shigella dysenteriae WbnK and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. WbnK in Shigella dysenteriae has been shown to be involved in the type 7 O-antigen biosynthesis. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QEY34190.1 | 3.80e-219 | 2 | 394 | 6 | 399 |
CAB1243208.1 | 3.23e-204 | 6 | 384 | 9 | 387 |
CDZ24024.1 | 3.67e-184 | 3 | 380 | 4 | 381 |
ABN54309.1 | 8.42e-157 | 1 | 374 | 1 | 376 |
ALX07677.1 | 8.42e-157 | 1 | 374 | 1 | 376 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
C0ZUT0 | 4.05e-08 | 110 | 377 | 134 | 410 | D-inositol 3-phosphate glycosyltransferase OS=Rhodococcus erythropolis (strain PR4 / NBRC 100887) OX=234621 GN=mshA PE=3 SV=1 |
D4GU66 | 3.34e-07 | 141 | 374 | 150 | 368 | Low-salt glycan biosynthesis hexosyltransferase Agl5 OS=Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) OX=309800 GN=agl5 PE=3 SV=1 |
A6W6D9 | 3.88e-07 | 131 | 390 | 167 | 435 | D-inositol 3-phosphate glycosyltransferase OS=Kineococcus radiotolerans (strain ATCC BAA-149 / DSM 14245 / SRS30216) OX=266940 GN=mshA PE=3 SV=1 |
D1A4Q3 | 2.11e-06 | 137 | 374 | 171 | 414 | D-inositol 3-phosphate glycosyltransferase OS=Thermomonospora curvata (strain ATCC 19995 / DSM 43183 / JCM 3096 / KCTC 9072 / NBRC 15933 / NCIMB 10081 / Henssen B9) OX=471852 GN=mshA PE=3 SV=1 |
D3Q051 | 6.67e-06 | 131 | 368 | 181 | 418 | D-inositol 3-phosphate glycosyltransferase OS=Stackebrandtia nassauensis (strain DSM 44728 / CIP 108903 / NRRL B-16338 / NBRC 102104 / LLR-40K-21) OX=446470 GN=mshA PE=3 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000060 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.