logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002941_00054

You are here: Home > Sequence: MGYG000002941_00054

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Actinomyces graevenitzii
Lineage Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Actinomycetaceae; Actinomyces; Actinomyces graevenitzii
CAZyme ID MGYG000002941_00054
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
337 MGYG000002941_1|CGC1 36896.44 5.022
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002941 1921862 MAG United States North America
Gene Location Start: 63820;  End: 64833  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002941_00054.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 6 124 2.2e-18 0.6882352941176471

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd00761 Glyco_tranf_GTA_type 1.22e-18 7 126 1 118
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
pfam00535 Glycos_transf_2 2.15e-17 6 122 1 115
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd04184 GT2_RfbC_Mx_like 1.47e-16 4 199 2 186
Myxococcus xanthus RfbC like proteins are required for O-antigen biosynthesis. The rfbC gene encodes a predicted protein of 1,276 amino acids, which is required for O-antigen biosynthesis in Myxococcus xanthus. It is a subfamily of Glycosyltransferase Family GT2, which includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds.
cd06433 GT_2_WfgS_like 2.48e-14 6 201 1 181
WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
COG0463 WcaA 1.10e-13 1 111 1 108
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QCT35087.1 3.46e-103 1 286 1 291
QGS11463.1 9.82e-103 1 286 1 291
QCT33770.1 7.38e-92 5 274 11 294
BAV84843.1 9.47e-92 5 274 11 294
QLF54048.1 2.15e-90 5 273 11 293

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P39614 6.34e-11 5 195 3 181
Uncharacterized glycosyltransferase YwdF OS=Bacillus subtilis (strain 168) OX=224308 GN=ywdF PE=3 SV=1
P22639 2.63e-08 5 119 3 115
Uncharacterized glycosyltransferase alr2836 OS=Nostoc sp. (strain PCC 7120 / SAG 25.82 / UTEX 2576) OX=103690 GN=alr2836 PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000042 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002941_00054.