logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002949_02309

You are here: Home > Sequence: MGYG000002949_02309

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UMGS1251 sp900549995
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; UMGS1251; UMGS1251 sp900549995
CAZyme ID MGYG000002949_02309
CAZy Family GH13
CAZyme Description Oligo-1,6-glucosidase 1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
517 MGYG000002949_29|CGC1 59382.46 4.4547
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002949 4765419 MAG United States North America
Gene Location Start: 19701;  End: 21254  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002949_02309.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 27 358 5.6e-71 0.9264214046822743

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11348 AmyAc_2 0.0 9 428 1 427
Alpha amylase catalytic domain found in an uncharacterized protein family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The catalytic triad (DED) is not present here. The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11333 AmyAc_SI_OligoGlu_DGase 8.72e-108 6 433 1 428
Alpha amylase catalytic domain found in Sucrose isomerases, oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), dextran glucosidase (also called glucan 1,6-alpha-glucosidase), and related proteins. The sucrose isomerases (SIs) Isomaltulose synthase (EC 5.4.99.11) and Trehalose synthase (EC 5.4.99.16) catalyze the isomerization of sucrose and maltose to produce isomaltulose and trehalulose, respectively. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Dextran glucosidase (DGase, EC 3.2.1.70) hydrolyzes alpha-1,6-glucosidic linkages at the non-reducing end of panose, isomaltooligosaccharides and dextran to produce alpha-glucose.The common reaction chemistry of the alpha-amylase family enzymes is based on a two-step acid catalytic mechanism that requires two critical carboxylates: one acting as a general acid/base (Glu) and the other as a nucleophile (Asp). Both hydrolysis and transglycosylation proceed via the nucleophilic substitution reaction between the anomeric carbon, C1 and a nucleophile. Both enzymes contain the three catalytic residues (Asp, Glu and Asp) common to the alpha-amylase family as well as two histidine residues which are predicted to be critical to binding the glucose residue adjacent to the scissile bond in the substrates. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11316 AmyAc_bac2_AmyA 1.89e-107 8 437 1 400
Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Chloroflexi, Dictyoglomi, and Fusobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11334 AmyAc_TreS 2.56e-107 4 431 1 447
Alpha amylase catalytic domain found in Trehalose synthetase. Trehalose synthetase (TreS) catalyzes the reversible interconversion of trehalose and maltose. The enzyme catalyzes the reaction in both directions, but the preferred substrate is maltose. Glucose is formed as a by-product of this reaction. It is believed that the catalytic mechanism may involve the cutting of the incoming disaccharide and transfer of a glucose to an enzyme-bound glucose. This enzyme also catalyzes production of a glucosamine disaccharide from maltose and glucosamine. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
TIGR02456 treS_nterm 9.97e-98 3 482 1 498
trehalose synthase. Trehalose synthase interconverts maltose and alpha, alpha-trehalose by transglucosylation. This is one of at least three mechanisms for biosynthesis of trehalose, an important and widespread compatible solute. However, it is not driven by phosphate activation of sugars and its physiological role may tend toward trehalose degradation. This view is accentuated by numerous examples of fusion to a probable maltokinase domain. The sequence region described by this model is found both as the whole of a trehalose synthase and as the N-terminal region of a larger fusion protein that includes trehalose synthase activity. Several of these fused trehalose synthases have a domain homologous to proteins with maltokinase activity from Actinoplanes missouriensis and Streptomyces coelicolor (). [Energy metabolism, Biosynthesis and degradation of polysaccharides]

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QNM03417.1 6.08e-247 1 513 1 509
ADL53938.1 4.27e-244 1 493 1 495
BAV13082.1 4.27e-244 1 493 1 495
QJU46751.1 1.38e-234 1 515 1 511
AXB87247.1 1.38e-234 1 515 1 511

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4M56_A 8.45e-70 1 480 1 521
TheStructure of Wild-type MalL from Bacillus subtilis [Bacillus subtilis subsp. subtilis str. 168],4M56_B The Structure of Wild-type MalL from Bacillus subtilis [Bacillus subtilis subsp. subtilis str. 168]
5GTW_A 1.47e-69 3 474 9 504
TheN253R mutant structures of trehalose synthase from Deinococcus radiodurans display two different active-site conformations [Deinococcus radiodurans R1],5GTW_B The N253R mutant structures of trehalose synthase from Deinococcus radiodurans display two different active-site conformations [Deinococcus radiodurans R1],5GTW_C The N253R mutant structures of trehalose synthase from Deinococcus radiodurans display two different active-site conformations [Deinococcus radiodurans R1],5GTW_D The N253R mutant structures of trehalose synthase from Deinococcus radiodurans display two different active-site conformations [Deinococcus radiodurans R1]
4WF7_A 1.47e-69 3 474 9 504
Crystalstructures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in the intramolecular isomerization catalysis [Deinococcus radiodurans R1],4WF7_B Crystal structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in the intramolecular isomerization catalysis [Deinococcus radiodurans R1],4WF7_C Crystal structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in the intramolecular isomerization catalysis [Deinococcus radiodurans R1],4WF7_D Crystal structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in the intramolecular isomerization catalysis [Deinococcus radiodurans R1]
4TVU_A 1.47e-69 3 474 9 504
Crystalstructure of trehalose synthase from Deinococcus radiodurans reveals a closed conformation for catalysis of the intramolecular isomerization [Deinococcus radiodurans R1],4TVU_B Crystal structure of trehalose synthase from Deinococcus radiodurans reveals a closed conformation for catalysis of the intramolecular isomerization [Deinococcus radiodurans R1],4TVU_C Crystal structure of trehalose synthase from Deinococcus radiodurans reveals a closed conformation for catalysis of the intramolecular isomerization [Deinococcus radiodurans R1],4TVU_D Crystal structure of trehalose synthase from Deinococcus radiodurans reveals a closed conformation for catalysis of the intramolecular isomerization [Deinococcus radiodurans R1],4TVU_E Crystal structure of trehalose synthase from Deinococcus radiodurans reveals a closed conformation for catalysis of the intramolecular isomerization [Deinococcus radiodurans R1],4TVU_F Crystal structure of trehalose synthase from Deinococcus radiodurans reveals a closed conformation for catalysis of the intramolecular isomerization [Deinococcus radiodurans R1],4TVU_G Crystal structure of trehalose synthase from Deinococcus radiodurans reveals a closed conformation for catalysis of the intramolecular isomerization [Deinococcus radiodurans R1],4TVU_H Crystal structure of trehalose synthase from Deinococcus radiodurans reveals a closed conformation for catalysis of the intramolecular isomerization [Deinococcus radiodurans R1]
5YKB_A 1.47e-69 3 474 9 504
TheN253F mutant structure of trehalose synthase from Deinococcus radiodurans reveals an open active-site conformation [Deinococcus radiodurans R1],5YKB_B The N253F mutant structure of trehalose synthase from Deinococcus radiodurans reveals an open active-site conformation [Deinococcus radiodurans R1],5YKB_C The N253F mutant structure of trehalose synthase from Deinococcus radiodurans reveals an open active-site conformation [Deinococcus radiodurans R1],5YKB_D The N253F mutant structure of trehalose synthase from Deinococcus radiodurans reveals an open active-site conformation [Deinococcus radiodurans R1]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
O06994 4.63e-69 1 480 1 521
Oligo-1,6-glucosidase 1 OS=Bacillus subtilis (strain 168) OX=224308 GN=malL PE=1 SV=1
A0R6E0 1.92e-66 2 431 33 484
Trehalose synthase/amylase TreS OS=Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) OX=246196 GN=treS PE=1 SV=1
P29094 2.02e-65 4 493 5 535
Oligo-1,6-glucosidase OS=Parageobacillus thermoglucosidasius OX=1426 GN=malL PE=1 SV=1
Q45101 6.59e-65 1 480 1 521
Oligo-1,6-glucosidase OS=Weizmannia coagulans OX=1398 GN=malL PE=3 SV=1
P9WQ18 2.36e-64 4 482 43 544
Trehalose synthase/amylase TreS OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=treS PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000073 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002949_02309.