logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003013_00662

You are here: Home > Sequence: MGYG000003013_00662

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Oribacterium sinus
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Oribacterium; Oribacterium sinus
CAZyme ID MGYG000003013_00662
CAZy Family GT4
CAZyme Description Putative glycosyltransferase EpsD
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
374 MGYG000003013_10|CGC1 42496.54 9.9327
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003013 2494431 MAG United States North America
Gene Location Start: 46874;  End: 47998  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003013_00662.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 205 343 8.2e-33 0.9

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03808 GT4_CapM-like 5.51e-79 4 343 1 328
capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides.
cd03801 GT4_PimA-like 5.80e-45 4 343 1 332
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03811 GT4_GT28_WabH-like 2.32e-37 23 355 22 339
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
cd03819 GT4_WavL-like 2.59e-36 69 333 54 310
Vibrio cholerae WavL and similar sequences. This family is most closely related to the GT4 family of glycosyltransferases. WavL in Vibrio cholerae has been shown to be involved in the biosynthesis of the lipopolysaccharide core.
cd03817 GT4_UGDG-like 1.66e-34 40 373 13 370
UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC 2.4.1.337, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
APC41948.1 6.70e-109 3 374 2 380
AGS26702.1 2.32e-106 1 328 1 330
QKE86993.1 4.54e-104 3 325 2 326
AYV92476.1 3.02e-103 3 372 2 373
CBL07786.1 2.84e-102 1 372 1 381

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6EJJ_A 9.55e-12 206 371 182 353
Structureof a glycosyltransferase / state 2 [Campylobacter jejuni],6EJJ_B Structure of a glycosyltransferase / state 2 [Campylobacter jejuni]
6EJI_A 1.71e-11 206 371 182 353
Structureof a glycosyltransferase [Campylobacter jejuni],6EJI_B Structure of a glycosyltransferase [Campylobacter jejuni],6EJK_A Structure of a glycosyltransferase [Campylobacter jejuni],6EJK_B Structure of a glycosyltransferase [Campylobacter jejuni]
4XSO_A 5.81e-10 69 344 60 345
ChainA, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSO_B Chain B, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSP_A Chain A, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSP_B Chain B, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSR_A Chain A, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSR_B Chain B, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSU_A Chain A, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSU_B Chain B, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418]
7MI0_A 5.96e-09 53 347 62 358
ChainA, Glycosyltransferase [Rickettsia africae ESF-5]
4X6L_A 1.68e-08 225 372 337 491
ChainA, TarM [Staphylococcus aureus subsp. aureus 21178],4X6L_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178],4X6L_C Chain C, TarM [Staphylococcus aureus subsp. aureus 21178],4X6L_D Chain D, TarM [Staphylococcus aureus subsp. aureus 21178],4X7P_A Chain A, TarM [Staphylococcus aureus subsp. aureus 21178],4X7P_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P71053 7.98e-63 1 372 1 368
Putative glycosyltransferase EpsD OS=Bacillus subtilis (strain 168) OX=224308 GN=epsD PE=2 SV=1
Q4JSW2 1.37e-13 182 342 196 370
D-inositol 3-phosphate glycosyltransferase OS=Corynebacterium jeikeium (strain K411) OX=306537 GN=mshA PE=3 SV=1
Q58469 2.20e-13 117 342 121 353
Uncharacterized glycosyltransferase MJ1069 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1069 PE=3 SV=1
C3PK12 2.49e-13 196 343 211 370
D-inositol 3-phosphate glycosyltransferase OS=Corynebacterium aurimucosum (strain ATCC 700975 / DSM 44827 / CIP 107346 / CN-1) OX=548476 GN=mshA PE=3 SV=1
B2HQV2 5.16e-12 93 344 136 398
D-inositol 3-phosphate glycosyltransferase OS=Mycobacterium marinum (strain ATCC BAA-535 / M) OX=216594 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000046 0.000004 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003013_00662.