logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003279_00129

You are here: Home > Sequence: MGYG000003279_00129

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Alistipes sp900541585
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Rikenellaceae; Alistipes; Alistipes sp900541585
CAZyme ID MGYG000003279_00129
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
372 MGYG000003279_1|CGC3 41724.16 7.9029
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003279 3216844 MAG United States North America
Gene Location Start: 155756;  End: 156874  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003279_00129.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 193 342 9.2e-31 0.93125

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03809 GT4_MtfB-like 1.44e-99 2 364 1 361
glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide.
cd03801 GT4_PimA-like 7.36e-53 11 368 9 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 1.63e-41 1 371 1 378
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03800 GT4_sucrose_synthase 1.82e-39 51 365 57 398
sucrose-phosphate synthase and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. The sucrose-phosphate synthases in this family may be unique to plants and photosynthetic bacteria. This enzyme catalyzes the synthesis of sucrose 6-phosphate from fructose 6-phosphate and uridine 5'-diphosphate-glucose, a key regulatory step of sucrose metabolism. The activity of this enzyme is regulated by phosphorylation and moderated by the concentration of various metabolites and light.
cd03798 GT4_WlbH-like 2.02e-33 57 370 67 376
Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AFL77652.1 3.57e-230 1 370 1 370
BBL11920.1 4.54e-222 1 370 1 370
BBL09128.1 4.54e-222 1 370 1 370
BBL01219.1 3.46e-221 1 370 1 370
BCG53686.1 8.93e-180 1 370 1 370

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3C4Q_A 1.45e-18 100 371 127 406
Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum]
3C48_A 1.54e-18 100 371 147 426
Structureof the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum],3C48_B Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum]
6KIH_A 1.62e-11 104 370 159 424
Sucrose-phosphatesynthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_B Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_C Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_D Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_E Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_F Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_G Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_H Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_I Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_J Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_K Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_L Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus]
6TVP_A 4.47e-10 144 370 157 399
Structureof Mycobacterium smegmatis alpha-maltose-1-phosphate synthase GlgM [Mycolicibacterium smegmatis MC2 155],6TVP_B Structure of Mycobacterium smegmatis alpha-maltose-1-phosphate synthase GlgM [Mycolicibacterium smegmatis MC2 155]
2R60_A 2.85e-07 264 370 350 459
Structureof apo Sucrose Phosphate Synthase (SPS) of Halothermothrix orenii [Halothermothrix orenii],2R66_A Complex Structure of Sucrose Phosphate Synthase (SPS)-F6P of Halothermothrix orenii [Halothermothrix orenii H 168],2R68_A Complex Structure of Sucrose Phosphate Synthase (SPS)-S6P of Halothermothrix orenii [Halothermothrix orenii H 168]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
A1SP12 2.75e-21 96 368 163 448
D-inositol 3-phosphate glycosyltransferase OS=Nocardioides sp. (strain ATCC BAA-499 / JS614) OX=196162 GN=mshA PE=3 SV=1
A8LDJ8 3.03e-19 17 371 43 427
D-inositol 3-phosphate glycosyltransferase OS=Frankia sp. (strain EAN1pec) OX=298653 GN=mshA PE=3 SV=1
C1AZ64 4.39e-19 96 368 135 412
D-inositol 3-phosphate glycosyltransferase OS=Rhodococcus opacus (strain B4) OX=632772 GN=mshA PE=3 SV=1
A0LQY9 4.44e-19 96 369 151 430
D-inositol 3-phosphate glycosyltransferase OS=Acidothermus cellulolyticus (strain ATCC 43068 / DSM 8971 / 11B) OX=351607 GN=mshA PE=3 SV=1
C6WPK3 1.23e-18 17 367 24 404
D-inositol 3-phosphate glycosyltransferase OS=Actinosynnema mirum (strain ATCC 29888 / DSM 43827 / JCM 3225 / NBRC 14064 / NCIMB 13271 / NRRL B-12336 / IMRU 3971 / 101) OX=446462 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000066 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003279_00129.