logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003306_01400

You are here: Home > Sequence: MGYG000003306_01400

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-448 sp003150135
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; CAG-272; CAG-448; CAG-448 sp003150135
CAZyme ID MGYG000003306_01400
CAZy Family GH13
CAZyme Description 1,4-alpha-glucan branching enzyme GlgB
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
703 MGYG000003306_64|CGC1 79802.02 6.2942
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003306 2266147 MAG China Asia
Gene Location Start: 7234;  End: 9345  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.18

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 215 514 1.8e-145 0.9966777408637874

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11322 AmyAc_Glg_BE 0.0 149 550 2 402
Alpha amylase catalytic domain found in the Glycogen branching enzyme (also called 1,4-alpha-glucan branching enzyme). The glycogen branching enzyme catalyzes the third step of glycogen biosynthesis by the cleavage of an alpha-(1,4)-glucosidic linkage and the formation a new alpha-(1,6)-branch by subsequent transfer of cleaved oligosaccharide. They are part of a group called branching enzymes which catalyze the formation of alpha-1,6 branch points in either glycogen or starch. This group includes proteins from bacteria, eukaryotes, and archaea. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
PRK14706 PRK14706 0.0 75 685 42 639
glycogen branching enzyme; Provisional
PRK14705 PRK14705 0.0 11 666 578 1222
glycogen branching enzyme; Provisional
TIGR01515 branching_enzym 0.0 48 664 1 617
alpha-1,4-glucan:alpha-1,4-glucan 6-glycosyltransferase. This model describes the glycogen branching enzymes which are responsible for the transfer of chains of approx. 7 alpha(1--4)-linked glucosyl residues to other similar chains (in new alpha(1--6) linkages) in the biosynthesis of glycogen. This enzyme is a member of the broader amylase family of starch hydrolases which fold as (beta/alpha)8 barrels, the so-called TIM-barrel structure. All of the sequences comprising the seed of this model have been experimentally characterized. This model encompasses both bacterial and eukaryotic species. No archaea have this enzyme, although Aquifex aolicus does. Two species, Bacillus thuringiensis and Clostridium perfringens have two sequences each which are annotated as amylases. These annotations are aparrently in error. GP|18143720 from C. perfringens, for instance, contains the note "674 aa, similar to gp:A14658_1 amylase (1,4-alpha-glucan branching enzyme (EC 2.4.1.18) ) from Bacillus thuringiensis (648 aa); 51.1% identity in 632 aa overlap." A branching enzyme from Porphyromonas gingivales, OMNI|PG1793, appears to be more closely related to the eukaryotic species (across a deep phylogenetic split) and may represent an instance of lateral transfer from this species' host. A sequence from Arabidopsis thaliana, GP|9294564, scores just above trusted, but appears either to contain corrupt sequence or, more likely, to be a pseudogene as some of the conserved catalytic residues common to the alpha amylase family are not conserved here. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
PRK05402 PRK05402 0.0 40 668 96 725
1,4-alpha-glucan branching protein GlgB.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QCN92803.1 6.87e-229 45 664 11 629
ADU27510.1 6.87e-229 45 664 11 629
AYF39224.1 6.87e-229 45 664 11 629
AYF42048.1 6.87e-229 45 664 11 629
AVQ96563.1 6.87e-229 45 664 11 629

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6JOY_A 6.47e-196 46 666 6 618
TheX-ray Crystallographic Structure of Branching Enzyme from Rhodothermus obamensis STB05 [Rhodothermus marinus]
3K1D_A 2.53e-194 40 666 97 721
Crystalstructure of glycogen branching enzyme synonym: 1,4-alpha-D-glucan:1,4-alpha-D-GLUCAN 6-glucosyl-transferase from mycobacterium tuberculosis H37RV [Mycobacterium tuberculosis H37Rv]
5GQW_A 7.84e-180 42 633 127 741
Crystalstructure of branching enzyme W610N mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142],5GQX_A Crystal structure of branching enzyme W610N mutant from Cyanothece sp. ATCC 51142 in complex with maltoheptaose [Crocosphaera subtropica ATCC 51142]
5GR2_A 1.11e-179 42 633 127 741
Crystalstructure of branching enzyme L541A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142],5GR4_A Crystal structure of branching enzyme L541A mutant from Cyanothece sp. ATCC 51142 in complex with maltoheptaose [Crocosphaera subtropica ATCC 51142]
5GR5_A 1.11e-179 42 633 127 741
Crystalstructure of branching enzyme W610A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q9I1W2 5.34e-215 29 666 95 730
1,4-alpha-glucan branching enzyme GlgB OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) OX=208964 GN=glgB PE=3 SV=1
Q3JCN0 3.75e-214 40 677 107 743
1,4-alpha-glucan branching enzyme GlgB OS=Nitrosococcus oceani (strain ATCC 19707 / BCRC 17464 / JCM 30415 / NCIMB 11848 / C-107) OX=323261 GN=glgB PE=3 SV=1
A6V628 4.89e-213 29 666 95 730
1,4-alpha-glucan branching enzyme GlgB OS=Pseudomonas aeruginosa (strain PA7) OX=381754 GN=glgB PE=3 SV=1
Q3SH78 6.36e-213 40 666 112 738
1,4-alpha-glucan branching enzyme GlgB OS=Thiobacillus denitrificans (strain ATCC 25259) OX=292415 GN=glgB PE=3 SV=1
Q5NXV7 2.55e-212 46 666 12 627
1,4-alpha-glucan branching enzyme GlgB OS=Aromatoleum aromaticum (strain EbN1) OX=76114 GN=glgB PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000076 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003306_01400.