logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003448_00703

You are here: Home > Sequence: MGYG000003448_00703

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species RC9 sp900767405
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; UBA932; RC9; RC9 sp900767405
CAZyme ID MGYG000003448_00703
CAZy Family GT94
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
376 42773.41 8.206
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003448 1065599 MAG Fiji Oceania
Gene Location Start: 5085;  End: 6215  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003448_00703.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT94 116 331 5.1e-19 0.7243816254416962

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03822 GT4_mannosyltransferase-like 3.87e-36 2 343 1 340
mannosyltransferases of glycosyltransferase family 4 and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. ORF704 in E. coli has been shown to be involved in the biosynthesis of O-specific mannose homopolysaccharides.
COG0438 RfaB 2.81e-29 1 371 1 373
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03801 GT4_PimA-like 7.08e-24 2 371 1 364
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03809 GT4_MtfB-like 7.83e-17 3 370 4 362
glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide.
pfam00534 Glycos_transf_1 2.84e-15 199 351 1 154
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AGY54189.1 1.82e-129 1 371 1 368
QWG00996.1 1.45e-122 1 375 1 372
ANQ47603.1 1.45e-122 1 375 1 372
QUT51857.1 7.51e-122 1 371 1 369
QWG07062.1 1.51e-121 1 376 1 373

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
D4GU66 2.57e-17 199 362 192 358
Low-salt glycan biosynthesis hexosyltransferase Agl5 OS=Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) OX=309800 GN=agl5 PE=3 SV=1
Q58577 1.19e-06 1 362 4 336
Uncharacterized glycosyltransferase MJ1178 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1178 PE=3 SV=1
C1AZ64 1.97e-06 185 370 218 409
D-inositol 3-phosphate glycosyltransferase OS=Rhodococcus opacus (strain B4) OX=632772 GN=mshA PE=3 SV=1
Q59002 2.35e-06 190 366 200 375
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
O32272 4.15e-06 75 353 85 361
Putative teichuronic acid biosynthesis glycosyltransferase TuaC OS=Bacillus subtilis (strain 168) OX=224308 GN=tuaC PE=2 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000009 0.000012 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003448_00703.