logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003550_00074

You are here: Home > Sequence: MGYG000003550_00074

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Clostridium sp900769625
Lineage Bacteria; Firmicutes_A; Clostridia; Clostridiales; Clostridiaceae; Clostridium; Clostridium sp900769625
CAZyme ID MGYG000003550_00074
CAZy Family GH32
CAZyme Description Sucrose-6-phosphate hydrolase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
477 MGYG000003550_4|CGC1 55946.22 4.8731
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003550 3104477 MAG Fiji Oceania
Gene Location Start: 11162;  End: 12595  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003550_00074.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 37 332 4.8e-88 0.9829351535836177

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd18623 GH32_ScrB-like 2.78e-139 43 329 1 289
glycoside hydrolase family 32 sucrose 6 phosphate hydrolase (sucrase). Glycosyl hydrolase family GH32 subgroup contains sucrose-6-phosphate hydrolase (sucrase, EC:3.2.1.26) among others. The enzyme cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
TIGR01322 scrB_fam 5.15e-135 20 453 1 443
sucrose-6-phosphate hydrolase. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
COG1621 SacC 9.33e-124 19 459 15 464
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
pfam00251 Glyco_hydro_32N 1.01e-105 37 331 1 301
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.
cd08996 GH32_FFase 1.52e-103 43 327 1 281
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AIY83614.1 1.83e-187 1 469 1 467
ALS36464.1 1.22e-180 4 475 3 481
AQP38830.1 2.89e-151 1 453 1 452
CBL39319.1 1.16e-150 1 453 1 452
AND40587.1 4.21e-122 7 453 7 465

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6NU7_A 3.79e-76 1 459 1 468
Structureof sucrose-6-phosphate hydrolase from Lactobacillus gasseri [Lactobacillus gasseri 224-1],6NU8_A Structure of sucrose-6-phosphate hydrolase from Lactobacillus gasseri in complex with fructose [Lactobacillus gasseri 224-1]
7BWB_A 1.41e-65 31 346 47 359
Bombyxmori GH32 beta-fructofuranosidase BmSUC1 [Bombyx mori]
7BWC_A 2.08e-64 31 346 47 359
Bombyxmori GH32 beta-fructofuranosidase BmSUC1 mutant D63A in complex with sucrose [Bombyx mori]
7VCO_A 5.12e-60 29 472 22 475
ChainA, Sucrose-6-phosphate hydrolase [Frischella perrara],7VCP_A Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara]
1UYP_A 3.58e-52 32 451 2 403
Thethree-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_B The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_C The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_D The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_E The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_F The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P13394 2.61e-79 7 463 11 463
Sucrose-6-phosphate hydrolase OS=Vibrio alginolyticus OX=663 GN=scrB PE=2 SV=1
Q05936 2.62e-78 2 465 3 474
Sucrose-6-phosphate hydrolase OS=Staphylococcus xylosus OX=1288 GN=scrB PE=3 SV=1
P43471 6.70e-77 8 453 8 461
Sucrose-6-phosphate hydrolase OS=Pediococcus pentosaceus OX=1255 GN=scrB PE=3 SV=2
P13522 6.74e-74 20 453 20 455
Sucrose-6-phosphate hydrolase OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) OX=210007 GN=scrB PE=3 SV=3
P07819 1.87e-73 36 465 32 464
Sucrose-6-phosphate hydrolase OS=Bacillus subtilis (strain 168) OX=224308 GN=sacA PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000054 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003550_00074.