logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003681_01685

You are here: Home > Sequence: MGYG000003681_01685

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bacteroides stercoris
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides; Bacteroides stercoris
CAZyme ID MGYG000003681_01685
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
270 31813.74 8.6515
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003681 3833391 Isolate China Asia
Gene Location Start: 29249;  End: 30061  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003681_01685.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 5 123 3.7e-18 0.711764705882353

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd00761 Glyco_tranf_GTA_type 1.96e-16 6 143 2 127
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
pfam00535 Glycos_transf_2 2.49e-12 4 118 1 117
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
COG0463 WcaA 4.42e-08 1 263 3 259
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd06423 CESA_like 7.79e-08 22 128 18 125
CESA_like is the cellulose synthase superfamily. The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan.
cd06433 GT_2_WfgS_like 1.84e-06 4 148 1 162
WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QII69805.1 3.73e-80 1 270 1 273
ASF42305.1 4.33e-73 1 270 1 270
ATA84866.1 4.95e-72 1 270 1 270
QIX67130.1 7.69e-72 4 270 3 271
QUR50459.1 7.69e-72 4 270 3 271

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1H7L_A 4.03e-07 2 142 2 145
dTDP-MAGNESIUMCOMPLEX OF SPSA FROM BACILLUS SUBTILIS [Bacillus subtilis],1H7Q_A dTDP-MANGANESE COMPLEX OF SPSA FROM BACILLUS SUBTILIS [Bacillus subtilis],1QG8_A Native (Magnesium-Containing) Spsa From Bacillus Subtilis [Bacillus subtilis],1QGQ_A Udp-manganese Complex Of Spsa From Bacillus Subtilis [Bacillus subtilis],1QGS_A Udp-Magnesium Complex Of Spsa From Bacillus Subtilis [Bacillus subtilis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P39621 2.22e-06 2 142 3 146
Spore coat polysaccharide biosynthesis protein SpsA OS=Bacillus subtilis (strain 168) OX=224308 GN=spsA PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000070 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      download full data without filtering help

start end
230 252