logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003710_00439

You are here: Home > Sequence: MGYG000003710_00439

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Loigolactobacillus coryniformis
Lineage Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Loigolactobacillus; Loigolactobacillus coryniformis
CAZyme ID MGYG000003710_00439
CAZy Family GH13
CAZyme Description Oligo-1,6-glucosidase 1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
407 MGYG000003710_24|CGC1 47859.88 6.4452
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003710 2331695 MAG Russia Europe
Gene Location Start: 13553;  End: 14776  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 5.4.99.11 3.2.1.10 3.2.1.20 3.2.1.70 3.2.1.- 2.4.1.-

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 2 225 3.8e-85 0.6361031518624641

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11333 AmyAc_SI_OligoGlu_DGase 4.17e-157 2 324 147 428
Alpha amylase catalytic domain found in Sucrose isomerases, oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), dextran glucosidase (also called glucan 1,6-alpha-glucosidase), and related proteins. The sucrose isomerases (SIs) Isomaltulose synthase (EC 5.4.99.11) and Trehalose synthase (EC 5.4.99.16) catalyze the isomerization of sucrose and maltose to produce isomaltulose and trehalulose, respectively. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Dextran glucosidase (DGase, EC 3.2.1.70) hydrolyzes alpha-1,6-glucosidic linkages at the non-reducing end of panose, isomaltooligosaccharides and dextran to produce alpha-glucose.The common reaction chemistry of the alpha-amylase family enzymes is based on a two-step acid catalytic mechanism that requires two critical carboxylates: one acting as a general acid/base (Glu) and the other as a nucleophile (Asp). Both hydrolysis and transglycosylation proceed via the nucleophilic substitution reaction between the anomeric carbon, C1 and a nucleophile. Both enzymes contain the three catalytic residues (Asp, Glu and Asp) common to the alpha-amylase family as well as two histidine residues which are predicted to be critical to binding the glucose residue adjacent to the scissile bond in the substrates. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
TIGR02403 trehalose_treC 1.59e-139 2 406 147 543
alpha,alpha-phosphotrehalase. Trehalose is a glucose disaccharide that serves in many biological systems as a compatible solute for protection against hyperosmotic and thermal stress. This family describes trehalose-6-phosphate hydrolase, product of the treC (or treA) gene, which is often found together with a trehalose uptake transporter and a trehalose operon repressor.
PRK10933 PRK10933 1.70e-125 3 401 155 545
trehalose-6-phosphate hydrolase; Provisional
COG0366 AmyA 8.93e-73 2 369 152 491
Glycosidase [Carbohydrate transport and metabolism].
pfam00128 Alpha-amylase 7.18e-71 3 226 127 331
Alpha amylase, catalytic domain. Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ATO55963.1 2.82e-307 1 407 153 559
ATO44276.1 2.82e-307 1 407 153 559
QEA53343.1 4.66e-306 1 407 153 559
ASZ34947.1 9.91e-185 2 405 154 556
ATF26375.1 3.87e-182 4 405 156 553

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4M8U_A 8.03e-142 6 401 157 554
TheStructure of MalL mutant enzyme V200A from Bacillus subtilus [Bacillus subtilis subsp. subtilis str. 168]
4M56_A 9.43e-141 6 401 157 555
TheStructure of Wild-type MalL from Bacillus subtilis [Bacillus subtilis subsp. subtilis str. 168],4M56_B The Structure of Wild-type MalL from Bacillus subtilis [Bacillus subtilis subsp. subtilis str. 168]
7LV6_B 1.02e-140 6 401 182 580
ChainB, Oligo-1,6-glucosidase 1 [Bacillus subtilis subsp. subtilis str. 168]
4MB1_A 1.33e-140 6 401 157 555
TheStructure of MalL mutant enzyme G202P from Bacillus subtilus [Bacillus subtilis subsp. subtilis str. 168]
5WCZ_A 2.04e-140 6 401 182 580
CrystalStructure of Wild-Type MalL from Bacillus subtilis with TS analogue 1-deoxynojirimycin [Bacillus subtilis subsp. subtilis str. 168],5WCZ_B Crystal Structure of Wild-Type MalL from Bacillus subtilis with TS analogue 1-deoxynojirimycin [Bacillus subtilis subsp. subtilis str. 168]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q45101 1.02e-143 6 362 157 514
Oligo-1,6-glucosidase OS=Weizmannia coagulans OX=1398 GN=malL PE=3 SV=1
O06994 5.16e-140 6 401 157 555
Oligo-1,6-glucosidase 1 OS=Bacillus subtilis (strain 168) OX=224308 GN=malL PE=1 SV=1
P29093 5.79e-121 6 348 156 499
Oligo-1,6-glucosidase OS=Bacillus sp. (strain F5) OX=268806 GN=malL PE=1 SV=2
P29094 1.81e-118 6 406 157 559
Oligo-1,6-glucosidase OS=Parageobacillus thermoglucosidasius OX=1426 GN=malL PE=1 SV=1
Q9K8U9 1.26e-115 6 401 157 553
Oligo-1,6-glucosidase OS=Alkalihalobacillus halodurans (strain ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125) OX=272558 GN=malL PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000041 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003710_00439.