logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003889_00238

You are here: Home > Sequence: MGYG000003889_00238

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-964 sp902789345
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Acutalibacteraceae; CAG-964; CAG-964 sp902789345
CAZyme ID MGYG000003889_00238
CAZy Family GH13
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
761 82256.19 4.5199
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003889 1974122 MAG United States North America
Gene Location Start: 19801;  End: 22086  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.98 3.2.1.60 3.2.1.- 3.2.1.1

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 91 473 1.3e-143 0.9972222222222222

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
PRK09505 malS 0.0 36 556 179 675
alpha-amylase; Reviewed
cd11320 AmyAc_AmyMalt_CGTase_like 3.35e-40 49 474 7 350
Alpha amylase catalytic domain found in maltogenic amylases, cyclodextrin glycosyltransferase, and related proteins. Enzymes such as amylases, cyclomaltodextrinase (CDase), and cyclodextrin glycosyltransferase (CGTase) degrade starch to smaller oligosaccharides by hydrolyzing the alpha-D-(1,4) linkages between glucose residues. In the case of CGTases, an additional cyclization reaction is catalyzed yielding mixtures of cyclic oligosaccharides which are referred to as alpha-, beta-, or gamma-cyclodextrins (CDs), consisting of six, seven, or eight glucose residues, respectively. CGTases are characterized depending on the major product of the cyclization reaction. Besides having similar catalytic site residues, amylases and CGTases contain carbohydrate binding domains that are distant from the active site and are implicated in attaching the enzyme to raw starch granules and in guiding the amylose chain into the active site. The maltogenic alpha-amylase from Bacillus is a five-domain structure, unlike most alpha-amylases, but similar to that of cyclodextrin glycosyltransferase. In addition to the A, B, and C domains, they have a domain D and a starch-binding domain E. Maltogenic amylase is an endo-acting amylase that has activity on cyclodextrins, terminally modified linear maltodextrins, and amylose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
COG0366 AmyA 4.52e-40 47 556 1 477
Glycosidase [Carbohydrate transport and metabolism].
cd11338 AmyAc_CMD 3.97e-39 55 528 10 383
Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11339 AmyAc_bac_CMD_like_2 4.20e-37 48 526 4 344
Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
BCN30960.1 5.64e-228 34 616 50 616
QCT06087.1 1.58e-222 5 619 7 645
QCT06045.1 2.97e-214 38 620 51 619
QMV42547.1 1.01e-177 5 616 2 587
CDM67955.1 2.14e-169 35 621 61 642

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1UKS_A 2.93e-23 34 203 4 160
ChainA, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011],1UKS_B Chain B, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011]
1D7F_A 2.93e-23 34 203 4 160
ChainA, CYCLODEXTRIN GLUCANOTRANSFERASE [Bacillus sp. 1011],1D7F_B Chain B, CYCLODEXTRIN GLUCANOTRANSFERASE [Bacillus sp. 1011],1DED_A Chain A, CYCLODEXTRIN GLUCANOTRANSFERASE [Bacillus sp. 1011],1DED_B Chain B, CYCLODEXTRIN GLUCANOTRANSFERASE [Bacillus sp. 1011]
1I75_A 2.93e-23 34 203 4 160
CRYSTALSTRUCTURE OF CYCLODEXTRIN GLUCANOTRANSFERASE FROM ALKALOPHILIC BACILLUS SP.#1011 COMPLEXED WITH 1-DEOXYNOJIRIMYCIN [Bacillus sp. (in: Bacteria)],1I75_B CRYSTAL STRUCTURE OF CYCLODEXTRIN GLUCANOTRANSFERASE FROM ALKALOPHILIC BACILLUS SP.#1011 COMPLEXED WITH 1-DEOXYNOJIRIMYCIN [Bacillus sp. (in: Bacteria)],1PAM_A CYCLODEXTRIN GLUCANOTRANSFERASE [Bacillus sp. 1011],1PAM_B CYCLODEXTRIN GLUCANOTRANSFERASE [Bacillus sp. 1011],1UKQ_A Crystal structure of cyclodextrin glucanotransferase complexed with a pseudo-maltotetraose derived from acarbose [Bacillus sp. 1011],1UKQ_B Crystal structure of cyclodextrin glucanotransferase complexed with a pseudo-maltotetraose derived from acarbose [Bacillus sp. 1011]
1V3J_A 2.93e-23 34 203 4 160
ChainA, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011],1V3J_B Chain B, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011],1V3L_A Chain A, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011],1V3L_B Chain B, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011]
1V3K_A 2.93e-23 34 203 4 160
ChainA, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011],1V3K_B Chain B, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011],1V3M_A Chain A, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011],1V3M_B Chain B, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P25718 1.36e-123 38 537 180 651
Periplasmic alpha-amylase OS=Escherichia coli (strain K12) OX=83333 GN=malS PE=1 SV=1
P05618 1.71e-22 34 203 31 187
Cyclomaltodextrin glucanotransferase OS=Bacillus sp. (strain 1011) OX=1410 GN=cgt PE=1 SV=1
P09121 1.71e-22 34 203 31 187
Cyclomaltodextrin glucanotransferase OS=Bacillus sp. (strain 38-2) OX=1412 GN=cgt PE=1 SV=2
P08137 6.07e-22 3 203 1 189
Alpha-amylase OS=Niallia circulans OX=1397 PE=3 SV=1
P14014 9.22e-22 34 203 38 194
Cyclomaltodextrin glucanotransferase OS=Bacillus licheniformis OX=1402 GN=cgtA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.000317 0.998897 0.000194 0.000212 0.000179 0.000164

TMHMM  Annotations      download full data without filtering help

start end
7 29
735 754