logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004128_01184

You are here: Home > Sequence: MGYG000004128_01184

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UMGS1253 sp900550065
Lineage Bacteria; Firmicutes_A; Clostridia; Monoglobales_A; UMGS1253; UMGS1253; UMGS1253 sp900550065
CAZyme ID MGYG000004128_01184
CAZy Family GH32
CAZyme Description Beta-fructosidase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
356 40539.42 5.3775
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004128 2239270 MAG United Kingdom Europe
Gene Location Start: 10675;  End: 11745  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004128_01184.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 7 290 9.7e-98 0.9931740614334471

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd08996 GH32_FFase 3.43e-122 13 282 1 281
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
COG1621 SacC 8.50e-112 3 296 29 341
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
pfam00251 Glyco_hydro_32N 4.05e-109 7 291 1 308
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.
cd18625 GH32_BfrA-like 9.73e-105 13 282 1 286
glycoside hydrolase family 32 protein such as Thermotoga maritima invertase (BfrA or Tm1414). This subfamily of glycosyl hydrolase family GH32 includes beta-fructosidase (invertase, EC 3.2.1.26) that cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
smart00640 Glyco_32 1.15e-98 7 296 1 316
Glycosyl hydrolases family 32.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AWP26624.1 1.94e-136 1 353 1 361
AVV57467.1 5.53e-136 1 353 1 361
ANA78618.1 5.53e-136 1 353 1 361
ACZ43204.1 1.46e-95 3 291 29 333
QOV85011.1 4.90e-91 3 350 14 434

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1UYP_A 9.69e-83 6 292 6 295
Thethree-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_B The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_C The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_D The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_E The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_F The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8]
1W2T_A 2.73e-82 6 292 6 295
beta-fructosidasefrom Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_B beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_C beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_D beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_E beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_F beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8]
7BWB_A 2.68e-73 2 302 46 360
Bombyxmori GH32 beta-fructofuranosidase BmSUC1 [Bombyx mori]
7BWC_A 4.12e-72 2 302 46 360
Bombyxmori GH32 beta-fructofuranosidase BmSUC1 mutant D63A in complex with sucrose [Bombyx mori]
7VCO_A 7.22e-70 6 296 29 337
ChainA, Sucrose-6-phosphate hydrolase [Frischella perrara],7VCP_A Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
O33833 1.69e-83 1 292 1 295
Beta-fructosidase OS=Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) OX=243274 GN=bfrA PE=1 SV=1
P40714 1.33e-66 6 292 28 331
Sucrose-6-phosphate hydrolase OS=Escherichia coli OX=562 GN=cscA PE=3 SV=1
P16553 1.46e-60 6 315 27 353
Raffinose invertase OS=Escherichia coli OX=562 GN=rafD PE=3 SV=1
P05656 4.46e-58 3 296 35 354
Levanase OS=Bacillus subtilis (strain 168) OX=224308 GN=sacC PE=1 SV=1
F8DVG5 1.93e-57 6 296 32 348
Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 10988 / DSM 424 / LMG 404 / NCIMB 8938 / NRRL B-806 / ZM1) OX=555217 GN=sacA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000051 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004128_01184.