Species | UMGS902 sp900761025 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Oscillospirales; CAG-272; UMGS902; UMGS902 sp900761025 | |||||||||||
CAZyme ID | MGYG000004214_00493 | |||||||||||
CAZy Family | GH31 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 10351; End: 13866 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH31 | 427 | 799 | 1e-60 | 0.9227166276346604 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
pfam01055 | Glyco_hydro_31 | 2.81e-57 | 429 | 974 | 2 | 442 | Glycosyl hydrolases family 31. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. Family 31 comprises of enzymes that are, or similar to, alpha- galactosidases. |
COG1501 | YicI | 3.79e-44 | 409 | 1050 | 217 | 745 | Alpha-glucosidase, glycosyl hydrolase family GH31 [Carbohydrate transport and metabolism]. |
cd06595 | GH31_u1 | 7.34e-44 | 457 | 736 | 12 | 302 | glycosyl hydrolase family 31 (GH31); uncharacterized subgroup. This family represents an uncharacterized GH31 enzyme subgroup found in bacteria and eukaryotes. Enzymes of the GH31 family possess a wide range of different hydrolytic activities including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. |
cd06598 | GH31_transferase_CtsZ | 2.64e-36 | 447 | 744 | 1 | 332 | CtsZ (cyclic tetrasaccharide-synthesizing enzyme Z)-like. CtsZ is a bacterial 6-alpha-glucosyltransferase, first identified in Arthrobacter globiformis, that produces cyclic tetrasaccharides together with a closely related enzyme CtsY. CtsZ and CtsY both have a glycosyl hydrolase family 31 (GH31) catalytic domain; CtsY belongs to a different subfamily. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. |
cd06589 | GH31 | 1.76e-33 | 456 | 727 | 10 | 264 | glycosyl hydrolase family 31 (GH31). GH31 enzymes occur in prokaryotes, eukaryotes, and archaea with a wide range of hydrolytic activities, including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. In most cases, the pyranose moiety recognized in subsite -1 of the substrate binding site is an alpha-D-glucose, though some GH31 family members show a preference for alpha-D-xylose. Several GH31 enzymes can accommodate both glucose and xylose and different levels of discrimination between the two have been observed. Most characterized GH31 enzymes are alpha-glucosidases. In mammals, GH31 members with alpha-glucosidase activity are implicated in at least three distinct biological processes. The lysosomal acid alpha-glucosidase (GAA) is essential for glycogen degradation and a deficiency or malfunction of this enzyme causes glycogen storage disease II, also known as Pompe disease. In the endoplasmic reticulum, alpha-glucosidase II catalyzes the second step in the N-linked oligosaccharide processing pathway that constitutes part of the quality control system for glycoprotein folding and maturation. The intestinal enzymes sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) play key roles in the final stage of carbohydrate digestion, making alpha-glucosidase inhibitors useful in the treatment of type 2 diabetes. GH31 alpha-glycosidases are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
AIE84875.1 | 1.36e-116 | 381 | 1072 | 111 | 787 |
ARN57252.1 | 4.91e-81 | 381 | 1103 | 264 | 845 |
AQQ09813.1 | 1.18e-75 | 366 | 1103 | 238 | 845 |
QFU96774.1 | 9.92e-39 | 425 | 801 | 512 | 915 |
QDH71261.1 | 1.55e-38 | 427 | 1058 | 295 | 1000 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
4B9Y_A | 2.70e-28 | 427 | 798 | 234 | 638 | CrystalStructure of Apo Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31 [Cellvibrio japonicus],4B9Z_A Crystal Structure of Agd31B, alpha-transglucosylase, complexed with Acarbose [Cellvibrio japonicus],4BA0_A Crystal Structure of Agd31B, alpha-transglucosylase, complexed with 5F-alpha-GlcF [Cellvibrio japonicus] |
5I23_A | 2.82e-28 | 427 | 798 | 211 | 615 | CrystalStructure of Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31, in complex with Cyclophellitol Aziridine probe CF022 [Cellvibrio japonicus Ueda107],5I24_A Crystal Structure of Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31, in complex with Cyclophellitol Aziridine probe CF021 [Cellvibrio japonicus Ueda107],5NPB_A Crystal Structure of cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with alpha Cyclophellitol Cyclosulfate probe ME647 [Cellvibrio japonicus],5NPE_A Crystal Structure of cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with beta Cyclophellitol Aziridine probe KY358 [Cellvibrio japonicus Ueda107] |
5NPC_A | 6.45e-28 | 427 | 798 | 210 | 614 | CrystalStructure of D412N nucleophile mutant cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with unreacted alpha Cyclophellitol Cyclosulfate probe ME647 [Cellvibrio japonicus],5NPD_A Crystal Structure of D412N nucleophile mutant cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with alpha Cyclophellitol Aziridine probe CF021 [Cellvibrio japonicus] |
7KMP_A | 5.46e-22 | 445 | 1057 | 426 | 946 | ChainA, Alpha-xylosidase [Xanthomonas citri pv. citri str. 306],7KNC_A Chain A, Alpha-xylosidase [Xanthomonas citri pv. citri str. 306] |
7WJ9_A | 6.40e-21 | 402 | 814 | 163 | 588 | ChainA, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_B Chain B, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_C Chain C, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_D Chain D, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_E Chain E, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_F Chain F, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJA_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJB_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_B Chain B, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_C Chain C, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_D Chain D, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_E Chain E, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_F Chain F, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
B3PEE6 | 1.48e-27 | 427 | 798 | 234 | 638 | Oligosaccharide 4-alpha-D-glucosyltransferase OS=Cellvibrio japonicus (strain Ueda107) OX=498211 GN=agd31B PE=1 SV=1 |
Q9F234 | 3.09e-21 | 427 | 814 | 232 | 651 | Alpha-glucosidase 2 OS=Bacillus thermoamyloliquefaciens OX=1425 PE=3 SV=1 |
Q9P999 | 2.72e-18 | 427 | 782 | 192 | 570 | Alpha-xylosidase OS=Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) OX=273057 GN=xylS PE=1 SV=1 |
P79403 | 2.42e-15 | 629 | 792 | 610 | 767 | Neutral alpha-glucosidase AB OS=Sus scrofa OX=9823 GN=GANAB PE=1 SV=1 |
Q14697 | 7.20e-15 | 629 | 792 | 610 | 767 | Neutral alpha-glucosidase AB OS=Homo sapiens OX=9606 GN=GANAB PE=1 SV=3 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
0.000369 | 0.284861 | 0.714368 | 0.000175 | 0.000123 | 0.000099 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.