logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004445_00495

You are here: Home > Sequence: MGYG000004445_00495

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Firmicutes_A; Clostridia_A; Christensenellales; Borkfalkiaceae; ;
CAZyme ID MGYG000004445_00495
CAZy Family GH13
CAZyme Description Amylopullulanase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
608 MGYG000004445_7|CGC1 69047.02 5.3959
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004445 2176712 MAG Israel Asia
Gene Location Start: 32791;  End: 34617  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004445_00495.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 169 498 2.7e-115 0.9936708860759493

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11338 AmyAc_CMD 8.51e-171 118 533 1 387
Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
PRK10785 PRK10785 6.79e-91 120 568 123 564
maltodextrin glucosidase; Provisional
PRK14510 PRK14510 3.86e-87 1 534 1 576
bifunctional glycogen debranching protein GlgX/4-alpha-glucanotransferase.
COG0366 AmyA 1.79e-46 119 565 1 486
Glycosidase [Carbohydrate transport and metabolism].
cd11339 AmyAc_bac_CMD_like_2 8.59e-37 117 501 1 306
Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QEY35300.1 1.21e-162 5 574 2 586
QAT48387.1 1.39e-159 66 565 72 576
BCI61467.1 4.07e-159 9 561 10 576
QOX62807.1 1.18e-158 3 608 13 628
QQR32000.1 3.78e-157 71 527 76 537

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2Z1K_A 3.10e-64 116 572 4 423
CrystalStructure of Ttha1563 from Thermus thermophilus HB8 [Thermus thermophilus HB8],2Z1K_B Crystal Structure of Ttha1563 from Thermus thermophilus HB8 [Thermus thermophilus HB8],2Z1K_C Crystal Structure of Ttha1563 from Thermus thermophilus HB8 [Thermus thermophilus HB8],2Z1K_D Crystal Structure of Ttha1563 from Thermus thermophilus HB8 [Thermus thermophilus HB8]
1EA9_C 9.00e-64 100 588 112 551
Cyclomaltodextrinase[Bacillus sp. (in: Bacteria)],1EA9_D Cyclomaltodextrinase [Bacillus sp. (in: Bacteria)]
5OT1_A 4.45e-60 3 559 186 719
ChainA, Pullulanase type II, GH13 family [Thermococcus kodakarensis]
1SMA_A 2.54e-59 95 567 108 542
CrystalStructure Of A Maltogenic Amylase [Thermus sp. IM6501],1SMA_B Crystal Structure Of A Maltogenic Amylase [Thermus sp. IM6501]
1GVI_A 3.44e-58 95 567 108 542
Thermusmaltogenic amylase in complex with beta-CD [Thermus sp.],1GVI_B Thermus maltogenic amylase in complex with beta-CD [Thermus sp.]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P16950 4.06e-95 2 605 247 915
Amylopullulanase OS=Thermoanaerobacter thermohydrosulfuricus OX=1516 GN=apu PE=1 SV=1
P38939 5.61e-92 2 568 247 875
Amylopullulanase OS=Thermoanaerobacter pseudethanolicus (strain ATCC 33223 / 39E) OX=340099 GN=apu PE=1 SV=2
P36905 1.44e-91 2 594 250 884
Amylopullulanase OS=Thermoanaerobacterium saccharolyticum OX=28896 GN=apu PE=3 SV=2
P38536 3.25e-90 2 550 250 846
Amylopullulanase OS=Thermoanaerobacterium thermosulfurigenes OX=33950 GN=amyB PE=3 SV=2
P29964 5.60e-66 42 573 44 543
Cyclomaltodextrinase OS=Thermoanaerobacter pseudethanolicus (strain ATCC 33223 / 39E) OX=340099 GN=Teth39_0676 PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000048 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004445_00495.