logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004468_00323

You are here: Home > Sequence: MGYG000004468_00323

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Alistipes_A sp900539755
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Rikenellaceae; Alistipes_A; Alistipes_A sp900539755
CAZyme ID MGYG000004468_00323
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
393 MGYG000004468_1|CGC5 45054.9 7.7349
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004468 2418771 MAG Israel Asia
Gene Location Start: 401132;  End: 402313  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004468_00323.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 212 357 6.5e-18 0.8875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03822 GT4_mannosyltransferase-like 6.31e-34 14 386 1 370
mannosyltransferases of glycosyltransferase family 4 and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. ORF704 in E. coli has been shown to be involved in the biosynthesis of O-specific mannose homopolysaccharides.
COG0438 RfaB 4.34e-30 12 388 2 377
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03801 GT4_PimA-like 1.30e-28 21 386 10 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03821 GT4_Bme6-like 1.22e-21 85 383 78 377
Brucella melitensis Bme6 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Bme6 in Brucella melitensis has been shown to be involved in the biosynthesis of a polysaccharide.
cd03800 GT4_sucrose_synthase 1.06e-19 194 379 203 394
sucrose-phosphate synthase and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. The sucrose-phosphate synthases in this family may be unique to plants and photosynthetic bacteria. This enzyme catalyzes the synthesis of sucrose 6-phosphate from fructose 6-phosphate and uridine 5'-diphosphate-glucose, a key regulatory step of sucrose metabolism. The activity of this enzyme is regulated by phosphorylation and moderated by the concentration of various metabolites and light.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
BCG53842.1 1.43e-224 3 389 1 387
QGA24742.1 6.03e-199 11 388 1 378
AFL79017.1 1.16e-143 16 388 5 377
BBK99837.1 2.19e-141 16 388 5 377
CBK64994.1 7.35e-141 3 391 4 392

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6TVP_A 1.16e-07 147 390 144 401
Structureof Mycobacterium smegmatis alpha-maltose-1-phosphate synthase GlgM [Mycolicibacterium smegmatis MC2 155],6TVP_B Structure of Mycobacterium smegmatis alpha-maltose-1-phosphate synthase GlgM [Mycolicibacterium smegmatis MC2 155]
3L01_A 1.23e-07 197 385 239 427
ChainA, GlgA glycogen synthase [Pyrococcus abyssi],3L01_B Chain B, GlgA glycogen synthase [Pyrococcus abyssi]
2BIS_A 1.25e-07 197 385 240 428
Structureof glycogen synthase from Pyrococcus abyssi [Pyrococcus abyssi],2BIS_B Structure of glycogen synthase from Pyrococcus abyssi [Pyrococcus abyssi],2BIS_C Structure of glycogen synthase from Pyrococcus abyssi [Pyrococcus abyssi]
3FRO_A 1.25e-07 197 385 239 427
Crystalstructure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi],3FRO_B Crystal structure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi],3FRO_C Crystal structure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
C0ZUT0 3.16e-12 194 389 211 411
D-inositol 3-phosphate glycosyltransferase OS=Rhodococcus erythropolis (strain PR4 / NBRC 100887) OX=234621 GN=mshA PE=3 SV=1
C7Q4Y6 1.66e-11 194 393 209 415
D-inositol 3-phosphate glycosyltransferase 1 OS=Catenulispora acidiphila (strain DSM 44928 / JCM 14897 / NBRC 102108 / NRRL B-24433 / ID139908) OX=479433 GN=mshA1 PE=3 SV=1
D6Z995 7.63e-11 25 391 56 438
D-inositol 3-phosphate glycosyltransferase OS=Segniliparus rotundus (strain ATCC BAA-972 / CDC 1076 / CIP 108378 / DSM 44985 / JCM 13578) OX=640132 GN=mshA PE=3 SV=1
Q9R9N2 2.28e-10 194 352 151 311
Lipopolysaccharide core biosynthesis mannosyltransferase LpsB OS=Rhizobium meliloti (strain 1021) OX=266834 GN=lpsB PE=3 SV=1
D5UJ42 5.59e-10 192 385 240 436
D-inositol 3-phosphate glycosyltransferase OS=Cellulomonas flavigena (strain ATCC 482 / DSM 20109 / BCRC 11376 / JCM 18109 / NBRC 3775 / NCIMB 8073 / NRS 134) OX=446466 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000074 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004468_00323.