logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004547_01903

You are here: Home > Sequence: MGYG000004547_01903

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; CAG-274; ;
CAZyme ID MGYG000004547_01903
CAZy Family GH43
CAZyme Description Xylan 1,3-beta-xylosidase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
512 58399.05 4.9164
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004547 2604006 MAG France Europe
Gene Location Start: 121;  End: 1659  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004547_01903.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH43 5 284 2.9e-95 0.9928825622775801

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd08989 GH43_XYL-like 2.13e-143 6 280 1 272
Glycosyl hydrolase family 43, beta-D-xylosidases and arabinofuranosidases. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes that have been annotated as having beta-1,4-xylosidase (beta-D-xylosidase;xylan 1,4-beta-xylosidase; EC 3.2.1.37) activity, including Selenomonas ruminantium beta-D-xylosidase SXA. These are part of an array of hemicellulases that are involved in the final breakdown of plant cell-wall whereby they degrade xylan. They hydrolyze beta-1,4 glycosidic bonds between two xylose units in short xylooligosaccharides. It also includes various GH43 family GH43 arabinofuranosidases (EC 3.2.1.55) including Humicola insolens alpha-L-arabinofuranosidase AXHd3, Bacteroides ovatus alpha-L-arabinofuranosidase (BoGH43, XynB), and the bifunctional Phanerochaete chrysosporium xylosidase/arabinofuranosidase (Xyl;PcXyl). GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd18617 GH43_XynB-like 4.03e-122 6 286 1 285
Glycosyl hydrolase family 43, such as Bacteroides ovatus alpha-L-arabinofuranosidase (BoGH43, XynB). This glycosyl hydrolase family 43 (GH43) subgroup includes enzymes that have been characterized to have alpha-L-arabinofuranosidase (EC 3.2.1.55) and beta-1,4-xylosidase (beta-D-xylosidase;xylan 1,4-beta-xylosidase; EC 3.2.1.37) activities. Beta-1,4-xylosidases are part of an array of hemicellulases that are involved in the final breakdown of plant cell-wall whereby they degrade xylan. They hydrolyze beta-1,4 glycosidic bonds between two xylose units in short xylooligosaccharides. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Also included in this subfamily are Bacteroides ovatus alpha-L-arabinofuranosidases, BoGH43A and BoGH43B, both having a two-domain architecture, consisting of an N-terminal 5-bladed beta-propeller domain harboring the catalytic active site, and a C-terminal beta-sandwich domain. However, despite significant functional overlap between these two enzymes, BoGH43A and BoGH43B share just 41% sequence identity. The latter appears to be significantly less active on the same substrates, suggesting that these paralogs may play subtly different roles during the degradation of xyloglucans from different sources, or may function most optimally at different stages in the catabolism of xyloglucan oligosaccharides (XyGOs), for example before or after hydrolysis of certain side-chain moieties. It also includes Phanerochaete chrysosporium BKM-F-1767 Xyl, a bifunctional xylosidase/arabinofuranosidase. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd09000 GH43_SXA-like 1.72e-113 6 284 1 289
Glycosyl hydrolase family 43, such as Selenomonas ruminantium beta-D-xylosidase SXA. This glycosyl hydrolase family 43 (GH43) includes enzymes that have been characterized to mainly have beta-1,4-xylosidase (beta-D-xylosidase;xylan 1,4-beta-xylosidase; EC 3.2.1.37) activity, including Selenomonas ruminantium (Xsa;Sxa;SXA), Bifidobacterium adolescentis ATCC 15703 (XylC;XynB;BAD_0428) and Bacillus sp. KK-1 XylB. They are part of an array of hemicellulases that are involved in the final breakdown of plant cell-wall whereby they degrade xylan. They hydrolyze beta-1,4 glycosidic bonds between two xylose units in short xylooligosaccharides. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. These enzymes possess an additional C-terminal beta-sandwich domain that restricts access for substrates to a portion of the active site to form a pocket. The active-site pockets comprise of two subsites, with binding capacity for two monosaccharide moieties and a single route of access for small molecules such as substrate. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
COG3507 XynB2 1.71e-112 1 510 18 547
Beta-xylosidase [Carbohydrate transport and metabolism].
pfam04616 Glyco_hydro_43 3.69e-98 4 285 1 281
Glycosyl hydrolases family 43. The glycosyl hydrolase family 43 contains members that are arabinanases. Arabinanases hydrolyze the alpha-1,5-linked L-arabinofuranoside backbone of plant cell wall arabinans. The structure of arabinanase Arb43A from Cellvibrio japonicus reveals a five-bladed beta-propeller fold. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
BCE13478.1 1.25e-219 2 512 5 515
BCE11865.1 1.25e-219 2 512 5 515
BCE05649.1 1.25e-219 2 512 5 515
QFY39779.1 2.51e-219 2 512 5 515
AJO17113.1 2.51e-219 2 512 5 515

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6MS3_A 7.89e-218 2 512 28 538
Crystalstructure of the GH43 protein BlXynB mutant (K247S) from Bacillus licheniformis [Bacillus licheniformis DSM 13 = ATCC 14580],6MS3_B Crystal structure of the GH43 protein BlXynB mutant (K247S) from Bacillus licheniformis [Bacillus licheniformis DSM 13 = ATCC 14580]
6MS2_A 1.12e-217 2 512 28 538
Crystalstructure of the GH43 BlXynB protein from Bacillus licheniformis [Bacillus licheniformis DSM 13 = ATCC 14580]
1YRZ_A 1.01e-109 1 510 2 524
ChainA, xylan beta-1,4-xylosidase [Halalkalibacterium halodurans C-125],1YRZ_B Chain B, xylan beta-1,4-xylosidase [Halalkalibacterium halodurans C-125]
3C2U_A 4.24e-94 5 510 4 535
Structureof the two subsite D-xylosidase from Selenomonas ruminantium in complex with 1,3-bis[tris(hydroxymethyl)methylamino]propane [Selenomonas ruminantium],3C2U_B Structure of the two subsite D-xylosidase from Selenomonas ruminantium in complex with 1,3-bis[tris(hydroxymethyl)methylamino]propane [Selenomonas ruminantium],3C2U_C Structure of the two subsite D-xylosidase from Selenomonas ruminantium in complex with 1,3-bis[tris(hydroxymethyl)methylamino]propane [Selenomonas ruminantium],3C2U_D Structure of the two subsite D-xylosidase from Selenomonas ruminantium in complex with 1,3-bis[tris(hydroxymethyl)methylamino]propane [Selenomonas ruminantium]
1Y7B_A 1.71e-90 1 510 1 533
Beta-d-xylosidase,A Family 43 Glycoside Hydrolase [Clostridium acetobutylicum ATCC 824],1Y7B_B Beta-d-xylosidase, A Family 43 Glycoside Hydrolase [Clostridium acetobutylicum ATCC 824],1Y7B_C Beta-d-xylosidase, A Family 43 Glycoside Hydrolase [Clostridium acetobutylicum ATCC 824],1Y7B_D Beta-d-xylosidase, A Family 43 Glycoside Hydrolase [Clostridium acetobutylicum ATCC 824]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
A9ZND1 1.26e-95 3 509 4 532
Xylan 1,3-beta-xylosidase OS=Vibrio sp. OX=678 GN=xloA PE=1 SV=1
A7LXT8 1.02e-87 4 510 23 519
Non-reducing end alpha-L-arabinofuranosidase BoGH43A OS=Bacteroides ovatus (strain ATCC 8483 / DSM 1896 / JCM 5824 / BCRC 10623 / CCUG 4943 / NCTC 11153) OX=411476 GN=BACOVA_02654 PE=1 SV=1
A7LXU0 1.21e-86 3 510 26 526
Non-reducing end alpha-L-arabinofuranosidase BoGH43B OS=Bacteroides ovatus (strain ATCC 8483 / DSM 1896 / JCM 5824 / BCRC 10623 / CCUG 4943 / NCTC 11153) OX=411476 GN=BACOVA_02656 PE=1 SV=2
P94489 2.87e-85 6 510 5 531
Beta-xylosidase OS=Bacillus subtilis (strain 168) OX=224308 GN=xynB PE=1 SV=2
P77713 1.70e-84 6 490 5 515
Putative beta-xylosidase OS=Escherichia coli (strain K12) OX=83333 GN=yagH PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000066 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004547_01903.