logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004573_01460

You are here: Home > Sequence: MGYG000004573_01460

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species F082 sp002633315
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; F082; F082; F082 sp002633315
CAZyme ID MGYG000004573_01460
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
381 43939.83 7.6475
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004573 2473880 MAG France Europe
Gene Location Start: 31293;  End: 32438  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004573_01460.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 202 352 5.5e-28 0.925

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03809 GT4_MtfB-like 8.38e-105 2 369 1 355
glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide.
cd03801 GT4_PimA-like 3.71e-48 16 379 15 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 1.81e-39 1 379 1 375
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03798 GT4_WlbH-like 7.00e-29 106 378 117 373
Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS.
cd03794 GT4_WbuB-like 1.18e-27 106 375 121 391
Escherichia coli WbuB and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. WbuB in E. coli is involved in the biosynthesis of the O26 O-antigen. It has been proposed to function as an N-acetyl-L-fucosamine (L-FucNAc) transferase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AVM53141.1 2.15e-138 1 379 1 373
QUT74153.1 2.58e-136 2 378 1 371
QGT72872.1 1.28e-134 1 381 1 375
AVM58061.1 5.74e-134 3 379 4 374
SCV07516.1 7.35e-134 1 381 1 375

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7MI0_A 7.93e-07 81 345 93 354
ChainA, Glycosyltransferase [Rickettsia africae ESF-5]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P26402 4.28e-19 113 343 109 319
Protein RfbU OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=rfbU PE=3 SV=1
Q58577 3.68e-11 27 381 38 349
Uncharacterized glycosyltransferase MJ1178 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1178 PE=3 SV=1
A7TZT2 1.66e-09 144 379 192 433
Mannosylfructose-phosphate synthase OS=Agrobacterium fabrum (strain C58 / ATCC 33970) OX=176299 GN=mfpsA PE=1 SV=1
P39862 2.42e-08 146 378 138 370
Capsular polysaccharide biosynthesis glycosyltransferase CapM OS=Staphylococcus aureus OX=1280 GN=capM PE=3 SV=1
Q9R9N2 2.92e-08 144 381 116 349
Lipopolysaccharide core biosynthesis mannosyltransferase LpsB OS=Rhizobium meliloti (strain 1021) OX=266834 GN=lpsB PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000032 0.000006 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004573_01460.