logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004665_00608

You are here: Home > Sequence: MGYG000004665_00608

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Limosilactobacillus;
CAZyme ID MGYG000004665_00608
CAZy Family GT4
CAZyme Description Glycosyltransferase Gtf1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
500 MGYG000004665_12|CGC1 57776.95 6.4525
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004665 1850159 MAG China Asia
Gene Location Start: 2260;  End: 3762  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004665_00608.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 319 469 3.2e-30 0.90625

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd04949 GT4_GtfA-like 1.04e-71 189 490 35 328
accessory Sec system glycosyltransferase GtfA and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases and is named after gtfA in Streptococcus gordonii, where it plays a role in the O-linked glycosylation of GspB, a cell surface glycoprotein involved in platelet binding. In general glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found in bacteria.
cd03820 GT4_AmsD-like 2.96e-43 163 491 36 350
amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran.
cd03801 GT4_PimA-like 4.26e-30 294 495 172 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03811 GT4_GT28_WabH-like 3.04e-26 302 486 174 351
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
pfam00534 Glycos_transf_1 6.90e-26 319 476 5 157
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QFS33728.1 7.19e-259 1 496 1 496
QBE45907.1 6.68e-239 1 496 1 496
ABQ83513.1 6.68e-239 1 496 1 496
BAG25706.1 6.68e-239 1 496 1 496
QPB66593.1 6.68e-239 1 496 1 496

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7EC3_A 1.39e-52 1 495 2 495
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC3_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFL_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFL_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
7EC1_A 1.39e-52 1 495 2 495
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC1_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC4_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC4_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC6_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC6_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFK_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFK_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFM_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFM_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFN_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFN_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
7EC7_A 1.35e-50 2 495 2 494
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC7_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFO_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFO_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
7EC2_A 2.60e-42 1 497 2 493
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC2_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
5E9T_A 1.75e-22 13 482 14 477
Crystalstructure of GtfA/B complex [Streptococcus gordonii],5E9T_C Crystal structure of GtfA/B complex [Streptococcus gordonii],5E9U_A Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii],5E9U_C Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii],5E9U_E Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii],5E9U_G Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q9AET5 1.18e-23 13 482 14 477
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus gordonii OX=1302 GN=gtfA PE=1 SV=2
Q3S2Y2 2.86e-23 13 496 14 499
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus agalactiae OX=1311 GN=gtfA PE=1 SV=1
P13484 5.17e-23 3 490 20 515
Poly(glycerol-phosphate) alpha-glucosyltransferase OS=Bacillus subtilis (strain 168) OX=224308 GN=tagE PE=1 SV=1
A0A0S4NM89 1.04e-20 126 491 140 503
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Limosilactobacillus reuteri (strain ATCC 53608) OX=927703 GN=gtfA PE=3 SV=1
A0A0H2WWV6 1.32e-18 10 490 12 487
Poly(ribitol-phosphate) alpha-N-acetylglucosaminyltransferase OS=Staphylococcus aureus (strain COL) OX=93062 GN=tarM PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000051 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004665_00608.