logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004702_01635

You are here: Home > Sequence: MGYG000004702_01635

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Oscillospiraceae; CAG-170;
CAZyme ID MGYG000004702_01635
CAZy Family GH13
CAZyme Description Amylopullulanase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
299 33841.44 5.0101
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004702 1811426 MAG China Asia
Gene Location Start: 572;  End: 1471  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004702_01635.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 2 196 1.8e-58 0.5664556962025317

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11338 AmyAc_CMD 1.22e-85 1 230 187 387
Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
PRK14510 PRK14510 3.55e-43 3 283 319 643
bifunctional glycogen debranching protein GlgX/4-alpha-glucanotransferase.
PRK10785 PRK10785 4.76e-40 2 289 309 594
maltodextrin glucosidase; Provisional
cd11313 AmyAc_arch_bac_AmyA 7.86e-27 2 230 145 336
Alpha amylase catalytic domain found in archaeal and bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes firmicutes, bacteroidetes, and proteobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11316 AmyAc_bac2_AmyA 7.92e-27 11 230 169 403
Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Chloroflexi, Dictyoglomi, and Fusobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
BCK79563.1 1.45e-73 3 267 306 568
QEY35300.1 8.99e-70 5 238 318 545
BBB90380.1 1.56e-69 3 255 333 589
ABO49988.1 3.22e-69 2 255 327 584
QNK39367.1 5.19e-69 2 275 315 605

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1SMA_A 1.48e-32 10 263 311 540
CrystalStructure Of A Maltogenic Amylase [Thermus sp. IM6501],1SMA_B Crystal Structure Of A Maltogenic Amylase [Thermus sp. IM6501]
2Z1K_A 1.03e-31 10 246 186 413
CrystalStructure of Ttha1563 from Thermus thermophilus HB8 [Thermus thermophilus HB8],2Z1K_B Crystal Structure of Ttha1563 from Thermus thermophilus HB8 [Thermus thermophilus HB8],2Z1K_C Crystal Structure of Ttha1563 from Thermus thermophilus HB8 [Thermus thermophilus HB8],2Z1K_D Crystal Structure of Ttha1563 from Thermus thermophilus HB8 [Thermus thermophilus HB8]
1GVI_A 1.82e-31 10 263 311 540
Thermusmaltogenic amylase in complex with beta-CD [Thermus sp.],1GVI_B Thermus maltogenic amylase in complex with beta-CD [Thermus sp.]
1J0H_A 4.66e-31 10 261 311 538
Crystalstructure of Bacillus stearothermophilus neopullulanase [Geobacillus stearothermophilus],1J0H_B Crystal structure of Bacillus stearothermophilus neopullulanase [Geobacillus stearothermophilus],1J0I_A Crystal structure of neopullulanase complex with panose [Geobacillus stearothermophilus],1J0I_B Crystal structure of neopullulanase complex with panose [Geobacillus stearothermophilus]
1J0J_A 1.19e-30 10 261 311 538
ChainA, neopullulanase [Geobacillus stearothermophilus],1J0J_B Chain B, neopullulanase [Geobacillus stearothermophilus],1J0K_A Chain A, neopullulanase [Geobacillus stearothermophilus],1J0K_B Chain B, neopullulanase [Geobacillus stearothermophilus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P16950 2.94e-38 2 253 599 854
Amylopullulanase OS=Thermoanaerobacter thermohydrosulfuricus OX=1516 GN=apu PE=1 SV=1
P38939 8.49e-37 2 255 598 854
Amylopullulanase OS=Thermoanaerobacter pseudethanolicus (strain ATCC 33223 / 39E) OX=340099 GN=apu PE=1 SV=2
P36905 3.14e-33 2 255 599 855
Amylopullulanase OS=Thermoanaerobacterium saccharolyticum OX=28896 GN=apu PE=3 SV=2
A0A7U9P668 8.10e-32 10 263 311 540
Cyclomaltodextrinase OS=Geobacillus thermopakistaniensis (strain MAS1) OX=1408282 GN=T260_08735 PE=1 SV=1
P38536 9.57e-32 2 255 598 854
Amylopullulanase OS=Thermoanaerobacterium thermosulfurigenes OX=33950 GN=amyB PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000058 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004702_01635.