logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004739_01274

You are here: Home > Sequence: MGYG000004739_01274

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Actinomyces sp000220835
Lineage Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Actinomycetaceae; Actinomyces; Actinomyces sp000220835
CAZyme ID MGYG000004739_01274
CAZy Family GH32
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
411 45401.84 5.6566
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004739 2692200 MAG China Asia
Gene Location Start: 8506;  End: 9741  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004739_01274.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 6 293 5.8e-67 0.9795221843003413

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd08996 GH32_FFase 2.20e-93 12 286 1 279
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
pfam00251 Glyco_hydro_32N 2.39e-60 6 294 1 304
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.
smart00640 Glyco_32 1.89e-54 6 283 1 295
Glycosyl hydrolases family 32.
COG1621 SacC 1.07e-51 2 286 29 325
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
cd18625 GH32_BfrA-like 9.63e-47 12 286 1 284
glycoside hydrolase family 32 protein such as Thermotoga maritima invertase (BfrA or Tm1414). This subfamily of glycosyl hydrolase family GH32 includes beta-fructosidase (invertase, EC 3.2.1.26) that cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AND16458.1 9.35e-156 2 405 3 409
ABL79605.1 6.91e-144 1 389 1 396
ALJ19675.1 4.08e-137 1 391 1 394
VEG75182.1 8.79e-136 2 376 4 382
QHO68681.1 9.26e-131 1 389 1 392

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1UYP_A 9.11e-38 2 286 3 283
Thethree-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_B The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_C The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_D The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_E The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_F The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8]
1W2T_A 2.42e-37 2 286 3 283
beta-fructosidasefrom Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_B beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_C beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_D beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_E beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_F beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8]
7VCO_A 4.01e-27 3 300 27 332
ChainA, Sucrose-6-phosphate hydrolase [Frischella perrara],7VCP_A Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara]
1ST8_A 7.75e-27 6 293 12 324
Crystalstructure of fructan 1-exohydrolase IIa from Cichorium intybus [Cichorium intybus],2ADD_A Crystal structure of fructan 1-exohydrolase IIa from Cichorium intybus in complex with sucrose [Cichorium intybus],2ADE_A Crystal structure of fructan 1-exohydrolase IIa from Cichorium intybus in complex with fructose [Cichorium intybus],2AEY_A Crystal structure of fructan 1-exohydrolase IIa from Cichorium intybus in complex with 2,5 dideoxy-2,5-immino-D-mannitol [Cichorium intybus]
2AEZ_A 1.93e-26 6 293 12 324
ChainA, fructan 1-exohydrolase IIa [Cichorium intybus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
O33833 9.79e-38 2 286 3 283
Beta-fructosidase OS=Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) OX=243274 GN=bfrA PE=1 SV=1
P40714 1.91e-36 3 377 26 436
Sucrose-6-phosphate hydrolase OS=Escherichia coli OX=562 GN=cscA PE=3 SV=1
P16553 6.84e-36 3 349 25 400
Raffinose invertase OS=Escherichia coli OX=562 GN=rafD PE=3 SV=1
F8DVG5 1.06e-31 3 291 30 337
Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 10988 / DSM 424 / LMG 404 / NCIMB 8938 / NRRL B-806 / ZM1) OX=555217 GN=sacA PE=3 SV=1
P0DJA7 1.45e-31 3 291 30 337
Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4) OX=264203 GN=sacA PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000059 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004739_01274.