logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004762_00263

You are here: Home > Sequence: MGYG000004762_00263

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Catenibacillus sp900553975
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Catenibacillus; Catenibacillus sp900553975
CAZyme ID MGYG000004762_00263
CAZy Family GH137
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
349 MGYG000004762_1|CGC6 39815.83 6.1841
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004762 3086790 MAG China Asia
Gene Location Start: 312721;  End: 313770  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004762_00263.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH137 7 342 3.7e-83 0.9264705882352942

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd18610 GH130_BT3780-like 2.30e-12 40 188 87 221
Glycosyl hydrolase family 130, such as beta-mammosidase BT3780 and BACOVA_03624. This subfamily contains glycosyl hydrolase family 130, as classified by the carbohydrate-active enzymes database (CAZY), and includes Bacteroides enzymes, BT3780 and BACOVA_03624. Members of this family possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. GH130 enzymes have also been shown to target beta-1,2- and beta-1,4-mannosidic linkages where these phosphorylases mediate bond cleavage by a single displacement reaction in which phosphate functions as the catalytic nucleophile. However, some lack the conserved basic residues that bind the phosphate nucleophile, as observed for the Bacteroides enzymes, BT3780 and BACOVA_03624, which are indeed beta-mannosidases that hydrolyze beta-1,2-mannosidic linkages through an inverting mechanism.
cd18609 GH32-like 1.05e-10 79 287 5 200
Glycosyl hydrolase family 32 family protein. The GH32 family contains glycosyl hydrolase family GH32 proteins that cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd08979 GH_J 3.36e-10 112 283 10 174
Glycosyl hydrolase families 32 and 68, which form the clan GH-J. This glycosyl hydrolase family clan J (according to carbohydrate-active enzymes database (CAZY)) includes family 32 (GH32) and 68 (GH68). GH32 enzymes include invertase (EC 3.2.1.26) and other other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). The GH68 family consists of frucosyltransferases (FTFs) that include levansucrase (EC 2.4.1.10, also known as beta-D-fructofuranosyl transferase), beta-fructofuranosidase (EC 3.2.1.26) and inulosucrase (EC 2.4.1.9). GH32 and GH68 family enzymes are retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) and catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd18609 GH32-like 1.70e-07 40 240 85 275
Glycosyl hydrolase family 32 family protein. The GH32 family contains glycosyl hydrolase family GH32 proteins that cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd18607 GH130 2.37e-07 111 311 15 189
Glycoside hydrolase family 130. Members of the glycosyl hydrolase family 130, as classified by the carbohydrate-active enzymes database (CAZY), are phosphorylases and hydrolases for beta-mannosides, and include beta-1,4-mannosylglucose phosphorylase (EC 2.4.1.281), beta-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319), beta-1,4-mannosyl-N-acetyl-glucosamine phosphorylase (EC 2.4.1.320), beta-1,2-mannobiose phosphorylase (EC 2.4.1.-), beta-1,2-oligomannan phosphorylase (EC 2.4.1.-) and beta-1,2-mannosidase (EC 3.2.1.-). They possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Beta-1,4-mannosylglucose phosphorylase is involved in degradation of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine linkages in the core of N-glycans; it produces alpha-mannose 1-phosphate and glucose from 4-O-beta-D-mannosyl-D-glucose and inorganic phosphate, using a critical catalytic Asp as a proton donor.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QOV18629.1 8.49e-173 3 342 9 337
QQE77964.1 4.24e-132 3 341 8 335
QMV42855.1 1.91e-130 1 339 1 327
QHT63254.1 1.26e-128 3 341 6 335
QTH42992.1 6.28e-128 1 349 1 341

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5MUI_A 3.95e-27 8 341 43 366
Glycosidehydrolase BT_0996 [Bacteroides thetaiotaomicron VPI-5482]
5MT2_A 6.47e-25 8 341 43 366
Glycosidehydrolase BT_0996 [Bacteroides thetaiotaomicron VPI-5482],5MUJ_A BT0996 RGII Chain B Complex [Bacteroides thetaiotaomicron VPI-5482]
7FIP_A 6.98e-06 30 187 106 298
ChainA, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIP_B Chain B, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIP_C Chain C, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIP_D Chain D, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIQ_A Chain A, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIQ_B Chain B, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIQ_C Chain C, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIQ_D Chain D, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIR_A Chain A, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIR_B Chain B, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIR_C Chain C, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIR_D Chain D, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIS_A Chain A, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIS_B Chain B, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIS_C Chain C, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIS_D Chain D, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514]

Swiss-Prot Hits      help

has no Swissprot hit.

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000067 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004762_00263.