logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004840_00297

You are here: Home > Sequence: MGYG000004840_00297

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Limosilactobacillus;
CAZyme ID MGYG000004840_00297
CAZy Family GH68
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
758 MGYG000004840_5|CGC1 82152.02 4.6899
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004840 1485842 MAG China Asia
Gene Location Start: 46765;  End: 49041  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.10 2.4.1.9

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH68 135 582 4.1e-147 0.9928057553956835

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
pfam02435 Glyco_hydro_68 1.12e-134 135 574 1 411
Levansucrase/Invertase. This Pfam family consists of the glycosyl hydrolase 68 family, including several bacterial levansucrase enzymes, and invertase from zymomonas.
cd08997 GH68 4.54e-110 190 572 1 354
Glycosyl hydrolase family 68, includes levansucrase, beta-fructofuranosidase and inulosucrase. Glycosyl hydrolase family 68 (GH68) consists of frucosyltransferases (FTFs) that include levansucrase (EC 2.4.1.10), beta-fructofuranosidase (EC 3.2.1.26) and inulosucrase (EC 2.4.1.9), all of which use sucrose as their preferential donor substrate. Levansucrase, also known as beta-D-fructofuranosyl transferase, catalyzes the transfer of the sucrose fructosyl moiety to a growing levan chain. Similarly, inulosucrase catalyzes long inulin-type of fructans, and beta-fructofuranosidases create fructooligosaccharides (FOS). However, in the absence of high fructan/sucrose ratio, some GH68 enzymes can also use fructan as donor substrate. GH68 retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. Biotechnological applications of these enzymes include use of inulin in inexpensive production of rich fructose syrups as well as use of FOS as health-promoting pre-biotics.
cd08979 GH_J 4.92e-19 191 561 1 290
Glycosyl hydrolase families 32 and 68, which form the clan GH-J. This glycosyl hydrolase family clan J (according to carbohydrate-active enzymes database (CAZY)) includes family 32 (GH32) and 68 (GH68). GH32 enzymes include invertase (EC 3.2.1.26) and other other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). The GH68 family consists of frucosyltransferases (FTFs) that include levansucrase (EC 2.4.1.10, also known as beta-D-fructofuranosyl transferase), beta-fructofuranosidase (EC 3.2.1.26) and inulosucrase (EC 2.4.1.9). GH32 and GH68 family enzymes are retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) and catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
PRK12270 kgd 8.82e-05 13 109 40 130
multifunctional oxoglutarate decarboxylase/oxoglutarate dehydrogenase thiamine pyrophosphate-binding subunit/dihydrolipoyllysine-residue succinyltransferase subunit.
NF033760 gliding_GltG 7.25e-04 3 90 104 186
adventurous gliding motility protein GltG. GltG proteins, including the founding member MXAN_4867 from Myxococcus xanthus, occur in certain delta-proteobacteria and are involved in adventurous gliding (A-)motility. GltG has an N-terminal forkhead-associated (FHA) domain domain, often associated with signal transduction.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QFV00814.1 0.0 93 758 129 760
AAS08734.1 2.09e-303 75 630 158 709
AHA97605.1 2.58e-303 75 630 158 709
QGY96906.1 1.23e-302 74 630 130 682
ACZ67286.1 1.35e-302 99 630 173 703

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2YFR_A 2.46e-307 75 629 15 565
Crystalstructure of inulosucrase from Lactobacillus johnsonii NCC533 [Lactobacillus johnsonii],2YFT_A Crystal structure of inulosucrase from Lactobacillus johnsonii NCC533 in complex with 1-kestose [Lactobacillus johnsonii]
2YFS_A 1.42e-306 75 629 15 565
Crystalstructure of inulosucrase from Lactobacillus johnsonii NCC533 in complex with sucrose [Lactobacillus johnsonii]
3OM6_A 1.29e-86 158 580 34 449
ChainA, Levansucrase [Priestia megaterium],3OM6_B Chain B, Levansucrase [Priestia megaterium],3OM6_C Chain C, Levansucrase [Priestia megaterium],3OM6_D Chain D, Levansucrase [Priestia megaterium]
3OM7_A 1.81e-86 158 580 34 449
ChainA, Levansucrase [Priestia megaterium],3OM7_B Chain B, Levansucrase [Priestia megaterium],3OM7_C Chain C, Levansucrase [Priestia megaterium],3OM7_D Chain D, Levansucrase [Priestia megaterium]
3OM4_A 3.54e-86 158 580 34 449
ChainA, Levansucrase [Priestia megaterium],3OM4_B Chain B, Levansucrase [Priestia megaterium],3OM4_C Chain C, Levansucrase [Priestia megaterium],3OM4_D Chain D, Levansucrase [Priestia megaterium]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q74K42 4.17e-304 75 630 158 709
Inulosucrase OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) OX=257314 GN=inuJ PE=1 SV=1
D3WYV9 2.70e-303 99 630 173 703
Inulosucrase OS=Lactobacillus gasseri OX=1596 GN=inuGB PE=1 SV=1
P11701 1.43e-253 98 631 152 680
Levansucrase OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) OX=210007 GN=ftf PE=3 SV=2
D3WYW0 4.81e-237 92 630 151 690
Levansucrase OS=Lactobacillus gasseri OX=1596 GN=levG PE=1 SV=1
Q70XJ9 1.30e-235 107 630 227 753
Levansucrase OS=Fructilactobacillus sanfranciscensis OX=1625 GN=levS PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000048 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      download full data without filtering help

start end
730 752