Species | Levilactobacillus namurensis | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Levilactobacillus; Levilactobacillus namurensis | |||||||||||
CAZyme ID | MGYG000004860_01747 | |||||||||||
CAZy Family | GT113 | |||||||||||
CAZyme Description | Beta-1,6-galactofuranosyltransferase WbbI | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 42141; End: 43199 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GT113 | 12 | 336 | 1.6e-90 | 0.9751552795031055 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
PRK09814 | PRK09814 | 1.90e-102 | 1 | 340 | 1 | 333 | sugar transferase. |
cd03794 | GT4_WbuB-like | 0.003 | 245 | 319 | 298 | 376 | Escherichia coli WbuB and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. WbuB in E. coli is involved in the biosynthesis of the O26 O-antigen. It has been proposed to function as an N-acetyl-L-fucosamine (L-FucNAc) transferase. |
cd03801 | GT4_PimA-like | 0.007 | 50 | 315 | 69 | 343 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
SMS15368.1 | 1.21e-227 | 1 | 352 | 1 | 352 |
QFR62055.1 | 1.21e-227 | 1 | 352 | 1 | 352 |
QMU08517.1 | 2.65e-215 | 1 | 352 | 1 | 352 |
SMS13283.1 | 4.84e-183 | 1 | 350 | 1 | 350 |
QFR61652.1 | 6.87e-183 | 1 | 350 | 1 | 350 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
4W6Q_A | 5.63e-35 | 1 | 341 | 3 | 330 | GlycosyltransferaseC from Streptococcus agalactiae [Streptococcus agalactiae COH1],4W6Q_B Glycosyltransferase C from Streptococcus agalactiae [Streptococcus agalactiae COH1],4W6Q_C Glycosyltransferase C from Streptococcus agalactiae [Streptococcus agalactiae COH1],4W6Q_D Glycosyltransferase C from Streptococcus agalactiae [Streptococcus agalactiae COH1] |
3QKW_A | 1.07e-34 | 1 | 331 | 3 | 320 | Structureof Streptococcus parasangunini Gtf3 glycosyltransferase [Streptococcus parasanguinis],3QKW_B Structure of Streptococcus parasangunini Gtf3 glycosyltransferase [Streptococcus parasanguinis],3QKW_C Structure of Streptococcus parasangunini Gtf3 glycosyltransferase [Streptococcus parasanguinis],3QKW_D Structure of Streptococcus parasangunini Gtf3 glycosyltransferase [Streptococcus parasanguinis] |
3RHZ_A | 1.23e-34 | 1 | 331 | 11 | 328 | Structureand functional analysis of a new subfamily of glycosyltransferases required for glycosylation of serine-rich streptococcal adhesions [Streptococcus parasanguinis],3RHZ_B Structure and functional analysis of a new subfamily of glycosyltransferases required for glycosylation of serine-rich streptococcal adhesions [Streptococcus parasanguinis] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
A0A0H2UR93 | 3.59e-41 | 20 | 331 | 20 | 324 | Glucosyltransferase 3 OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=gtf3 PE=1 SV=1 |
B3XPQ7 | 1.84e-40 | 11 | 340 | 10 | 332 | Glucosyltransferase 3 OS=Limosilactobacillus reuteri (strain DSM 17509 / CIP 109821 / 100-23) OX=349123 GN=gtf3 PE=3 SV=1 |
F8KEJ1 | 1.13e-39 | 11 | 340 | 15 | 337 | N-acetylglucosaminyltransferase OS=Limosilactobacillus reuteri (strain ATCC 53608) OX=927703 GN=gtf3 PE=1 SV=1 |
Q9AEU1 | 1.54e-36 | 20 | 342 | 20 | 334 | Glucosyltransferase 3 OS=Streptococcus gordonii OX=1302 GN=gtf3 PE=3 SV=1 |
A0A0M3KKZ0 | 2.96e-34 | 1 | 341 | 1 | 328 | Glucosyltransferase 3 OS=Streptococcus agalactiae serotype III (strain COH1) OX=342616 GN=gtf3 PE=1 SV=2 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000048 | 0.000005 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.