Species | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Clostridium_N; | |||||||||||
CAZyme ID | MGYG000004879_00604 | |||||||||||
CAZy Family | GT4 | |||||||||||
CAZyme Description | Glycosyltransferase Gtf1 | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 48844; End: 49920 Strand: - |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd03809 | GT4_MtfB-like | 5.85e-34 | 59 | 345 | 81 | 359 | glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide. |
cd03801 | GT4_PimA-like | 6.72e-33 | 53 | 346 | 74 | 361 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
COG0438 | RfaB | 6.86e-33 | 38 | 357 | 60 | 381 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
cd03817 | GT4_UGDG-like | 3.87e-26 | 63 | 345 | 86 | 371 | UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC 2.4.1.337, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol. |
cd03811 | GT4_GT28_WabH-like | 3.50e-25 | 16 | 337 | 36 | 349 | family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QIX91413.1 | 1.35e-131 | 1 | 356 | 1 | 356 |
QRP37264.1 | 3.84e-131 | 1 | 356 | 1 | 356 |
ASN97925.1 | 3.84e-131 | 1 | 356 | 1 | 356 |
QTE73647.1 | 1.36e-121 | 1 | 352 | 1 | 354 |
QTE72662.1 | 1.36e-121 | 1 | 352 | 1 | 354 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
5I45_A | 3.89e-12 | 164 | 326 | 23 | 184 | 1.35Angstrom Crystal Structure of C-terminal Domain of Glycosyl Transferase Group 1 Family Protein (LpcC) from Francisella tularensis. [Francisella tularensis subsp. tularensis SCHU S4] |
6EJI_A | 2.76e-06 | 178 | 346 | 186 | 350 | Structureof a glycosyltransferase [Campylobacter jejuni],6EJI_B Structure of a glycosyltransferase [Campylobacter jejuni],6EJK_A Structure of a glycosyltransferase [Campylobacter jejuni],6EJK_B Structure of a glycosyltransferase [Campylobacter jejuni] |
6EJJ_A | 4.89e-06 | 178 | 346 | 186 | 350 | Structureof a glycosyltransferase / state 2 [Campylobacter jejuni],6EJJ_B Structure of a glycosyltransferase / state 2 [Campylobacter jejuni] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
D4GU62 | 3.38e-10 | 58 | 320 | 100 | 359 | Low-salt glycan biosynthesis hexosyltransferase Agl9 OS=Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) OX=309800 GN=agl9 PE=3 SV=1 |
P39862 | 3.75e-08 | 160 | 356 | 187 | 376 | Capsular polysaccharide biosynthesis glycosyltransferase CapM OS=Staphylococcus aureus OX=1280 GN=capM PE=3 SV=1 |
Q48453 | 4.67e-07 | 47 | 314 | 60 | 320 | Uncharacterized 41.2 kDa protein in cps region OS=Klebsiella pneumoniae OX=573 PE=4 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000045 | 0.000004 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.