Database for Polyphenol Utilized Proteins from gut microbiota
Loading…

Family


Introduction

Oxidation/Reduction Reactions can be catalyzed by oxidoreductase that involves the transfer of electrons from one molecule, the reductant, also called the electron donor, to another, the oxidant, also called the electron acceptor. Oxidoreductase usually utilizes NADP or NAD+ as cofactors.12

The substrate oxidized is regarded as a hydrogen or electron donor. The classification is based on ‘donor:acceptor oxidoreductase’. The common name is ‘dehydrogenase’, wherever this is possible; as an alternative, ‘acceptor reductase’ can be used. ‘Oxidase’ is used only where O2 is an acceptor. Classification is difficult in some cases, because of the lack of specificity towards the acceptor.

Oxidoreductases can be either oxidases or dehydrogenases. Oxidases are generally involved when molecular oxygen functions as an acceptor of hydrogen or electrons. However, dehydrogenases work by oxidizing a substrate through transferring hydrogen to an acceptor that is either NAD/NADP or a flavin enzyme. Peroxidases, hydroxylases, oxygenases, and reductases also belong to oxidoreductases. Peroxidases are placed in peroxisomes, and could catalyze the reduction of hydrogen peroxide. Hydroxylases give hydroxyl groups to its substrates. Oxygenases could incorporate oxygen from molecular oxygen into organic substrates. In most cases, reductases can act like oxidases, but catalyzing reductions.

Oxidoreductases are sorted as EC 1 in the EC number classification of enzymes and can be further classified into 22 subclasses.


Reaction

The catalyzed reactions are similar to the following reaction:

Ared + Box → Aox + Bred

where A is the reductant (electron donor) and B is the oxidant (electron acceptor).

In biochemical reactions, the redox reactions are sometimes more difficult to observe, such as this reaction from glycolysis:

Pi + glyceraldehyde-3-phosphate + NAD+ → NADH + H+ + 1,3-bisphosphoglycerate

where NAD+ is the oxidant (electron acceptor), and glyceraldehyde-3-phosphate functions as reductant ( electron donor).

For a detailed information on class, subclass or sub-subclass of oxidoreductases, please visit ExplorEnz.


Pfam Information

Family Number Characterized Pfam
OR1 B1XDG0 ADH_zinc_N; ADH_N_2
OR2 Q52028 Rieske; Ring_hydroxyl_A
OR3 A0A0U1WKA6; E1CIA4; F7V1S0; H3JUE4; M9NZ71; V9P074 Oxidored_FMN; Pyr_redox_2
OR4 E7FL40; F7V1S3; H3JUE2; M9P0B3 FAD_binding_2
OR5 E7FL41; F7V1S2; H3JUE3; M9NYU8 adh_short_C2
OR6 Q2EYY8 HpaB; HpaB_N
OR7 Q74HL7; Q74HL8 FMN_red
OR8 P42106; A2VA43 Cupin_2
OR9 G2IMF2; Q2G4H9 NAD_binding_10

ORs Subfamily Number

OR1: OR1_1 / OR1_2 / OR1_3 / OR1_4 / OR1_5 / OR1_6 / OR1_7 / OR1_8 / OR1_9

OR2: No subfamily

OR3: No subfamily

OR4: OR4_1 / OR4_2 / OR4_3 / OR4_4 / OR4_5 / OR4_6 / OR4_7 / OR4_8

OR5: OR5_1 / OR5_2 / OR5_3 / OR5_4 / OR5_5 / OR5_6 / OR5_7 / OR5_8 / OR5_9

OR6: OR6_1 OR6_2 OR6_3 OR6_4 OR6_5 OR6_6 OR6_7 OR6_8 OR6_9

OR7: No subfamily

OR8: OR8_1 / OR8_2 / OR8_3 / OR8_4 / OR8_5 / OR8_6 / OR8_7 / OR8_8 / OR8_9 / OR8_10 / OR8_11 / OR8_12 / OR8_13 / OR8_14 / OR8_15 / OR8_16 /OR8_17 / OR8_18 / OR8_19 / OR8_20 / OR8_21 / OR8_22 / OR8_23 / OR8_24 / OR8_25 / OR8_26

OR9: OR9_1 / OR9_2 / OR9_3 / OR9_4 / OR9_5 / OR9_6 / OR9_7 / OR9_8 / OR9_9


EC in ORs Families (sorted by counts)

OR1 1.3.1.48 ; 1.3.1.74 ; 1.3.1.n3

OR2 1.14.12.19 ; 1.14.12.12 ; 1.14.12.18 ; 1.14.12.3 ; 1.14.12.11 ; 1.14.12.24

OR3 1.3.1.115 ; 1.3.1.116 ; 1.3.1.34

OR4 1.1.5.3 ; 1.4.3.16 ; 1.3.5.1 ; 1.3.5.4 ; 1.3.99.33 ; 1.3.1.6 ; 1.3.4.1

OR5 1.1.1.1 ; 1.1.1.330 ; 1.1.1.100 ; 1.3.1.9 ; 1.1.1.62 ; 1.1.1.300 ; 1.3.1.87 ; 1.5.1.3 ; 1.5.1.50 ; 1.1.1.105 ; 1.1.1.30 ; 1.1.1.53 ; 1.3.1.34 ; 1.1.1.239 ; 1.1.1.304 ; 1.1.1.184 ; 1.1.1.209 ; 1.1.1.10 ; 1.1.1.47 ; 1.1.1.146 ; 1.1.1.381 ; 1.1.1.36 ; 1.1.1.n12 ; 4.2.1.119 ; 2.3.1.41 ; 1.1.1.141 ; 1.1.1.35 ; 1.1.1.51 ; 1.1.1.138 ; 1.1.1.298 ; 1.1.1.315 ; 1.3.1.56 ; 1.1.1.178 ; 1.3.1.38 ; 1.1.1.127 ; 1.1.1.270 ; 1.1.1.236 ; 1.1.1.64 ; 1.1.1.313 ; 1.1.1.250 ; 1.3.1.29 ; 1.1.1.16 ; 1.1.1.385 ; 1.3.1.28 ; 4.2.1.107 ; 1.1.1.395 ; 1.1.1.69 ; 1.1.1.289 ; 1.1.1.276 ; 1.3.1.39 ; 1.1.1.159 ; 1.3.1.25 ; 1.3.1.60 ; 1.1.1.391 ; 1.1.1.331 ; 1.1.1.252 ; 1.1.1.163 ; 1.1.1.206 ; 1.3.1.58 ; 1.1.1.326 ; 1.1.1.76 ; 1.1.1.390 ; 1.1.1.288 ; 1.1.1.295 ; 1.3.1.49 ; 1.1.1.6 ; 1.1.1.216 ; 1.1.1.119 ; 1.1.1.n4 ; 1.1.1.401 ; 1.1.1.413 ; 1.1.1.162 ; 1.2.1.62 ; 1.3.1.19 ; 1.1.1.403 ; 1.1.1.268 ; 1.1.1.393 ; 1.1.1.269 ; 1.1.1.223 ; 1.1.1.243 ; 1.1.1.386 ; 1.1.1.175 ; 1.1.1.140 ; 1.1.1.362 ; 1.1.1.377 ; 1.1.1.311 ; 1.1.1.392 ; 1.1.1.233 ; 1.1.1.107 ; 1.1.1.14 ; 1.1.1.173 ; 2.3.1.94 ; 1.3.1.104

OR6 1.14.14.9 ; 1.14.13.29

OR7 1.7.1.17 ; 1.6.5.2 ; 1.3.99.33 ; 1.5.1.36 ; 1.6.5.6

OR8 2.7.7.13 ; 1.13.11.54 ; 5.3.1.8 ; 1.15.1.1 ; 1.13.11.24

OR9 5.1.3.2 ; 1.1.1.219 ; 1.1.1.234 ; 1.23.1.1 ; 1.23.1.2 ; 1.23.1.3 ; 5.1.3.5 ; 1.23.1.4 ; 1.3.1.45 ; 1.1.1.319 ; 1.1.1.318


References


  1. Eric J. Toone (2006). Advances in Enzymology and Related Areas of Molecular Biology, Protein Evolution (Volume 75 ed.). Wiley-Interscience. ISBN 0471205036. 

  2. Nicholas C. Price; Lewis Stevens (1999). Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins (Third ed.). USA: Oxford University Press. ISBN 019850229X. 


Copyright © 2022 University of Nebraska-Lincoln | Dr. Yin's Lab at UNL
Handcoded by Pengxiang Zhang & Yinchao He.