Browse dbCAN-PUL Entries

PULID Characterization Method(s) Substrate Organism Publication Publish Date Type Num Genes Num CAZymes CazyFamily
PUL0011 enzyme activity assay cellulose Ruminiclostridium cellulolyticum 8936327
Molecular study and overexpression of the Clostridium cellulolyticum celF cellulase gene in Escherichia coli. Microbiology (Reading). 1996 Apr;142 ( Pt 4):1013-1023. doi: 10.1099/00221287-142-4-1013.
1996 Apr degradation 4 4 GH48, GH8, CBM3, GH9, CBM4, GH9
PUL0083 label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay lignocellulose Ruminiclostridium papyrosolvens 31338125
Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019.
2019 degradation 12 10 cohesin, CBM3, GH48, GH8, CBM3, GH9, CBM4, CBM30, GH9, CBM3, GH9, CBM3, GH9, GH5_17, GH9, GH5_7, GH5_1
PUL0320 liquid chromatography and mass spectrometry, mass spectrometry, target decoy database analysis glucan Caldicellulosiruptor bescii 29475869, 29588665
Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate. Appl Environ Microbiol. 2018 Apr 16;84(9):e02694-17. doi: 10.1128/AEM.02694-17. Print 2018 May 1. Biotechnol Biofuels. 2018 Mar 23;11:80. doi: 10.1186/s13068-018-1076-1. eCollection 2018.
2018 May 1,2018 degradation 19 9 CE12, PL11, CBM3, PL3_1, CBM66, PL3, PL9_1, PL9, CBM66, CBM22, GH10, GH48, CBM3, GH44, GH5, CBM3, GH5_8, GH48, GH74, CBM3, GT39, GH5, GH9, CBM3, GH5_8, GH5_1, CBM3, GH5_8, GH9, GH48, CBM3
PUL0322 liquid chromatography and mass spectrometry glucan Caldicellulosiruptor danielii 29475869
Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. Appl Environ Microbiol. 2018 Apr 16;84(9):e02694-17. doi: 10.1128/AEM.02694-17. Print 2018 May 1.
2018 May 1 degradation 20 11 CBM3, PL11, CE12, PL3_1, CBM66, PL3, CBM66, PL9, PL9_1, CBM66, PL9, PL9_1, CBM66, PL9, PL9_1, CBM3, GH74, GH48, GT39, CBM3, GH9, GH5, GH5_8, GH5_1, GH10, GH5, CBM22, CBM3, GH48, GH10, GH12, CBM22, CBM3, CBM3, GH5, GH44, GH5_8, CBM3, GH9, GH48
PUL0385 ion trap liquid chromatography, mass spectrometry, target decoy database analysis, high performance anion exchange chromatography cellulose Ruminiclostridium cellulolyticum 20013800
Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics. 2010 Feb;10(3):541-54. doi: 10.1002/pmic.200900311.
2010 Feb degradation 12 10 GH48, GH8, GH9, CBM3, CBM4, GH9, CBM30, GH9, CBM3, GH9, CBM3, GH5_17, GH9, PL11_1, PL11, GH5_1
PUL0391 microarray cellulose, xylan, xyloglucan, pectin, mannan Caldicellulosiruptor bescii 21227922
Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res. 2011 Apr;39(8):3240-54. doi: 10.1093/nar/gkq1281. Epub 2011 Jan 11.
2011 Apr degradation 15 10 PL11, CBM35, GH12, CBM3, CBM2, CE12, PL3_1, PL3, CBM66, PL9_1, CBM35, CBM66, PL9, CBM22, GH12, CBM0, CBM3, CBM2, CBM1, GH48, GH10, CBM9, GH44, CBM35, GH12, CBM44, CBM3, CBM2, CBM76, CBM10, GH5, GH5_8, CBM35, GH12, CBM5, CBM3, CBM2, GH74, CBM1, GH48, GT39, CBM3, GH9, GH5_8, CBM3, GH5_1, GH5_8, CBM3, GH48, GH9