PULID | Characterization Method(s) | Substrate | Organism | Publication | Publish Date | Type | Num Genes | Num CAZymes | CazyFamily |
---|---|---|---|---|---|---|---|---|---|
PUL0011 | enzyme activity assay | cellulose | Ruminiclostridium cellulolyticum | 8936327 Molecular study and overexpression of the Clostridium cellulolyticum celF cellulase gene in Escherichia coli. Microbiology (Reading). 1996 Apr;142 ( Pt 4):1013-1023. doi: 10.1099/00221287-142-4-1013. |
1996 Apr | degradation | 4 | 4 | GH48, GH8, CBM3, GH9, CBM4, GH9 |
PUL0017 | qRT-PCR, Western Blot, isothermal titration calorimetry | cellobiose | Ruminiclostridium cellulolyticum | 29093754 A seven-gene cluster in Ruminiclostridium cellulolyticum is essential for signalization, uptake and catabolism of the degradation products of cellulose hydrolysis. Biotechnol Biofuels. 2017 Oct 30;10:250. doi: 10.1186/s13068-017-0933-7. eCollection 2017. |
2017 | degradation | 9 | 1 | GH94 |
PUL0040 | Northern Blot, enzyme activity assay | cellulose | Ruminiclostridium cellulolyticum | 12896991, 1398087, 11844767 A rhamnogalacturonan lyase in the Clostridium cellulolyticum cellulosome. Sequence analysis of a gene cluster encoding cellulases from Clostridium cellulolyticum. Cel9M, a new family 9 cellulase of the Clostridium cellulolyticum cellulosome. J Bacteriol. 2003 Aug;185(16):4727-33. doi: 10.1128/JB.185.16.4727-4733.2003. Gene. 1992 Sep 21;119(1):17-28. doi: 10.1016/0378-1119(92)90062-t. J Bacteriol. 2002 Mar;184(5):1378-84. doi: 10.1128/JB.184.5.1378-1384.2002. |
2003 Aug,1992 Sep 21,2002 Mar | degradation | 6 | 6 | GH9, CBM3, GH9, CBM3, GH5_17, GH9, PL11_1, PL11, GH5_1, GH5 |
PUL0083 | label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay | lignocellulose | Ruminiclostridium papyrosolvens | 31338125 Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019. |
2019 | degradation | 12 | 10 | cohesin, CBM3, GH48, GH8, CBM3, GH9, CBM4, CBM30, GH9, CBM3, GH9, CBM3, GH9, GH5_17, GH9, GH5_7, GH5_1 |
PUL0084 | label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay | lignocellulose | Ruminiclostridium papyrosolvens | 31338125 Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019. |
2019 | degradation | 12 | 12 | GH10, CBM6, GH43_29, GH43, CBM6, CE1, CBM6, GH43_10, CBM6, GH62, CBM6, GH43_29, GH43, CBM6, GH27, CBM6, GH59, CBM6, GH62, CE6, CBM6, GH95, CBM32, CE1, CBM6, GH30_8, CBM6 |
PUL0085 | label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay | lignocellulose | Ruminiclostridium papyrosolvens | 31338125 Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019. |
2019 | degradation | 3 | 3 | CBM35, GH26, GH9, CBM3, GH9 |
PUL0086 | label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay | lignocellulose | Ruminiclostridium papyrosolvens | 31338125 Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019. |
2019 | degradation | 3 | 3 | PL10, PL10_1, CE8, CE12, PL11_1, PL11 |
PUL0087 | label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay | lignocellulose | Ruminiclostridium papyrosolvens | 31338125 Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019. |
2019 | degradation | 2 | 2 | CBM3, GH9, CBM3, GH9 |
PUL0089 | label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay | lignocellulose | Ruminiclostridium papyrosolvens | 31338125 Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019. |
2019 | degradation | 2 | 1 | GH5, GH5_4, CBM79 |
PUL0114 | recombinant protein expression, enzyme activity assay | arabinofuranose | Ruminiclostridium cellulolyticum | 31198441 The xyl-doc gene cluster of Ruminiclostridium cellulolyticum encodes GH43- and GH62-alpha-l-arabinofuranosidases with complementary modes of action. Biotechnol Biofuels. 2019 Jun 10;12:144. doi: 10.1186/s13068-019-1483-y. eCollection 2019. |
2019 | degradation | 14 | 14 | GH43, GH43_16, CBM6, GH10, CBM6, GH43, GH43_29, CBM6, CE1, CBM6, GH43_10, CBM6, GH62, CBM6, GH43, GH43_29, CBM6, GH146, CBM22, GH27, CBM6, GH59, CBM6, GH2, CBM6, GH62, CE6, CBM6, CBM32, GH95, CBM6, GH30_8, CBM6 |
PUL0195 | RT-PCR | cellobiose | Clostridium acetobutylicum | 26691835 PTS regulation domain-containing transcriptional activator CelR and sigma factor sigma(54) control cellobiose utilization in Clostridium acetobutylicum. Mol Microbiol. 2016 Apr;100(2):289-302. doi: 10.1111/mmi.13316. Epub 2016 Feb 9. |
2016 Apr | degradation | 5 | 1 | GH1 |
PUL0210 | enzyme activity assay | N-glycan | Clostridium perfringens | 25605731 Metabolic fate of unsaturated glucuronic/iduronic acids from glycosaminoglycans: molecular identification and structure determination of streptococcal isomerase and dehydrogenase. J Biol Chem. 2015 Mar 6;290(10):6281-92. doi: 10.1074/jbc.M114.604546. Epub 2015 Jan 20. |
2015 Mar 6 | degradation | 13 | 3 | PL8, GH88, PL12_1 |
PUL0224 | RT-PCR, qRT-PCR | cellulose | Ruminiclostridium cellulolyticum | 23418511 A two-component system (XydS/R) controls the expression of genes encoding CBM6-containing proteins in response to straw in Clostridium cellulolyticum. PLoS One. 2013;8(2):e56063. doi: 10.1371/journal.pone.0056063. Epub 2013 Feb 13. |
2013 | degradation | 16 | 14 | GH43_16, GH43, CBM6, GH10, CBM6, GH43, GH43_29, CBM6, CBM6, CE1, GH43_10, CBM6, GH62, CBM6, GH43, GH43_29, CBM6, GH146, CBM22, GH27, CBM6, GH59, CBM6, GH2, CBM6, GH62, CBM6, CE6, CBM32, GH95, CBM6, GH30_8, CBM6 |
PUL0385 | ion trap liquid chromatography, mass spectrometry, target decoy database analysis, high performance anion exchange chromatography | cellulose | Ruminiclostridium cellulolyticum | 20013800 Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics. 2010 Feb;10(3):541-54. doi: 10.1002/pmic.200900311. |
2010 Feb | degradation | 12 | 10 | GH48, GH8, GH9, CBM3, CBM4, GH9, CBM30, GH9, CBM3, GH9, CBM3, GH5_17, GH9, PL11_1, PL11, GH5_1 |
PUL0386 | ion trap liquid chromatography, mass spectrometry, target decoy database analysis, high performance anion exchange chromatography | hemicellulose | Ruminiclostridium cellulolyticum | 20013800 Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics. 2010 Feb;10(3):541-54. doi: 10.1002/pmic.200900311. |
2010 Feb | degradation | 11 | 11 | GH43, CBM6, GH43_16, GH10, CBM6, GH43_29, GH43, CBM6, CE1, CBM6, GH43_10, CBM6, GH62, CBM6, GH43_29, GH43, CBM6, GH146, CBM22, GH27, CBM6, GH59, CBM6, GH2, CBM6 |
PUL0434 | SDS-PAGE, Western Blot | mannooligosaccharide | Clostridium cellulovorans | 10613891 The engL gene cluster of Clostridium cellulovorans contains a gene for cellulosomal manA. J Bacteriol. 2000 Jan;182(1):244-7. doi: 10.1128/JB.182.1.244-247.2000. |
2000 Jan | degradation | 8 | 2 | CBM30, CBM4, GH9, GH9, GH5_17, CBM4, GH9, CBM4 |
PUL0568 | clone and expression, enzyme activity assay, Northern Blot | sucrose | Clostridium beijerinckii | 10411273 The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon. Microbiology (Reading). 1999 Jun;145 ( Pt 6):1461-1472. doi: 10.1099/13500872-145-6-1461. |
1999 Jun | degradation | 4 | 1 | GH32 |
PUL0598 | liquid chromatography and mass spectrometry, differential gene expression | xylose | Clostridium cellulovorans 743B | 26020016 Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015. |
2015 | degradation | 4 | 1 | GH95 |
PUL0599 | liquid chromatography and mass spectrometry, differential gene expression | xylan | Clostridium cellulovorans | 26020016 Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015. |
2015 | degradation | 7 | 1 | GH43, GH43_11 |
PUL0600 | liquid chromatography and mass spectrometry, differential gene expression | galactomannan | Clostridium cellulovorans | 26020016 Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015. |
2015 | degradation | 12 | 2 | GH130, GH130, GH2 |
PUL0601 | liquid chromatography and mass spectrometry, differential gene expression | pectin | Clostridium cellulovorans | 26020016 Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015. |
2015 | degradation | 15 | 1 | GH28, GH105 |
Copyright 2020 © YIN LAB, UNL. All rights reserved. Designed by Catie Ausland and Jinfang Zheng. Maintained by Yanbin Yin.